A007318 Pascal's triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1 9 1 9 36 84 126 126 84 36 9 1 10 1 10 45 120 210 252 210 120 45 10 1 11 1 11 55 165 330 462 462 330 165 55 11 1 ... There are C(4,2)=6 ways to distribute 5 balls BBBBB, among 3 different urns, < > ( ) [ ], so that each urn gets at least one ball, namely, <BBB>(B)[B], <B>(BBB)[B], <B>(B)[BBB], <BB>(BB)[B], <BB>(B)[BB], and <B>(BB)[BB]. There are C(4,2)=6 increasing functions from {1,2} to {1,2,3,4}, namely, {(1,1),(2,2)},{(1,1),(2,3)}, {(1,1),(2,4)}, {(1,2),(2,3)}, {(1,2),(2,4)}, and {(1,3),(2,4)}. - _Dennis P. Walsh_, Apr 07 2011 There are C(4,2)=6 subsets of {1,2,3,4,5} with median element 3, namely, {3}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, and {1,2,3,4,5}. - _Dennis P. Walsh_, Dec 15 2011 The successive k-iterations of {A(0)} = E are E;E;E;...; the corresponding number of elements are 1,1,1,... The successive k-iterations of {A(1)} = {a} are (omitting brackets) a;a,E; a,E,E;...; the corresponding number of elements are 1,2,3,... The successive k-iterations of {A(2)} = {a,a} are aa; aa,a,E; aa, a, E and a,E and E;...; the corresponding number of elements are 1,3,6,... - _Gregory L. Simay_, Aug 06 2018 Boas-Buck type recurrence for column k = 4: T(8, 4) = (5/4)*(1 + 5 + 15 + 35) = 70. See the Boas-Buck comment above. - _Wolfdieter Lang_, Nov 12 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, vol. 1 (1966), pp. 68-74.
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 63ff.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 306.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 68-74.
- Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- A. W. F. Edwards, Pascal's Arithmetical Triangle, 2002.
- William Feller, An Introduction to Probability Theory and Its Application, Vol. 1, 2nd ed. New York: Wiley, p. 36, 1968.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 155.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, pp. 140-141.
- David Hök, Parvisa mönster i permutationer [Swedish], 2007.
- Donald E. Knuth, The Art of Computer Programming, Vol. 1, 2nd ed., p. 52.
- Sergei K. Lando, Lecture on Generating Functions, Amer. Math. Soc., Providence, R.I., 2003, pp. 60-61.
- Blaise Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière, Desprez, Paris, 1665.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 271-275.
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 6.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
- Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996, p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, pages 43-52.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 13, 30-33.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 115-118.
- Douglas B. West, Combinatorial Mathematics, Cambridge, 2021, p. 25.
Links
- N. J. A. Sloane, First 141 rows of Pascal's triangle, formatted as a simple linear sequence: (n, a(n)), n=0..10152.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332, No. 6 (2014), pp. 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42 (2012), pp. 2053-2059.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, Vol. 1 (1966), pp. 68-74.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Peter Bala, A combinatorial interpretation for the binomial coefficients, 2013.
- Cyril Banderier and Donatella Merlini, Lattice paths with an infinite set of jumps, Proceedings of the 14th International Conference on Formal Power Series and Algebraic Combinatorics, Melbourne, Australia. 2002.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays , JIS, Vol. 12 (2009) Article 09.8.6.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011) Article 11.4.3, example 2.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.2.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.1.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.4.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.6.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Vol. 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, Vol. 491 (2016), pp. 343-385.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- Paul Barry, On the r-shifted central triangles of a Riordan array, arXiv:1906.01328 [math.CO], 2019.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 2.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2.
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc. (2), Vol. 79 (2009), pp. 422-444.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 4.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- Douglas Butler, Pascal's Triangle.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Dario T. de Castro, p-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1 (2013), pp. 73-98.
- CombOS - Combinatorial Object Server, Generate combinations.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A, Vo. 453, No. 1966 (1997), pp. 2369-2389.
- Tom Copeland, Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, Vol. 5 (1977), pp. 72-81.
- Karl Dilcher and Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes, The American Mathematical Monthly, Vol. 112, No. 8 (Oct 2005), pp. 673-681.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182-2212. MR2404544 (2009j:05019).
- Steffen Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq., Vol. 18 (2015), Article 15.4.1.
- Leonhard Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. See also The Euler Archive, item E709.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
- A. Farina, S. Giompapa, A. Graziano, A. Liburdi, M. Ravanelli, and F. Zirilli, Tartaglia-Pascal's triangle: a historical perspective with applications, Signal, Image and Video Processing, Vol. 7, No. 1 (January 2013), pp. 173-188.
- Steven Finch, Pascal Sebah, and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- David Fowler, The binomial coefficient function, Amer. Math. Monthly, Vol. 103, No. 1 (1996), pp. 1-17.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023
- Brady Haran and Casandra Monroe, Pascal's Triangle, Numberphile video (2017).
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., Vol. 309, No. 12 (2009), pp. 3962-3974.
- Nick Hobson, Python program for A007318.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom. [archived page]
- Charles Jordan, Calculus of Finite Differences (p. 65).
- Subhash Kak, The golden mean and the physics of aesthetics, in: B. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, MA, 2009, pp. 111-119; arXiv preprint, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Petro Kolosov, Polynomial identities involving Pascal's triangle rows, 2022.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Eitan Y. Levine, GCD formula proof.
- Meng Li and Ron Goldman, Limits of sums for binomial and Eulerian numbers and their associated distributions, Discrete mathematics, Vol. 343, No. 7 (2020), 111870.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, Vol. 184 (1893), pp. 835-901.
- Mathforum, Pascal's Triangle
- Carl McTague, On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q), arXiv:1510.06696 [math.CO], 2015.
- D. Merlini, R. Sprugnoli, and M. C. Verri, An algebra for proper generating trees, in: D. Gardy and A. Mokkadem (eds.), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 127-139; alternative link.
- Donatella Merlini, Francesca Uncini, and M. Cecilia Verri, A unified approach to the study of general and palindromic compositions, Integers, Vol. 4 (2004), A23, 26 pp.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Pierre Remond de Montmort, Essay d'analyse sur les jeux de hazard, Paris: Chez Jacque Quillau, 1708, p. 80.
- Yossi Moshe, The density of 0's in recurrence double sequences, J. Number Theory, Vol. 103 (2003), pp. 109-121.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, Vol. 9, No. 2 (1997), pp. 319-335.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh, and Claus Michael Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- OEIS Wiki, Binomial coefficients
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., Vol. 36, No. 2 (1998), pp. 98-109.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003. [Cached copy, with permission (pdf only)]
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Yuriy Shablya, Dmitry Kruchinin, and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics, Vol. 8, No. 6 (2020), 962.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., Vol. 34 (1991), pp. 229-239.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Triangle showing silhouette of first 30 rows of Pascal's triangle (after Cobeli and Zaharescu)
- N. J. A. Sloane, The OEIS: A Fingerprint File for Mathematics, arXiv:2105.05111 [math.HO], 2021.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Hermann Stamm-Wilbrandt, Compute C(n+m,...) based on C(n,...) and C(m,...) values animation.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Christopher Stover and Eric W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Gérard Villemin's Almanach of Numbers, Triangle de Pascal.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Pascal's triangle.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 12ff.
- Ken Williams, Mathforum, Interactive Pascal's Triangle.
- Doron Zeilberger, The Combinatorial Astrology of Rabbi Abraham Ibn Ezra, arXiv:math/9809136 [math.CO], 1998.
- Chris Zheng and Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
- Index entries for triangles and arrays related to Pascal's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to Benford's law.
Crossrefs
Equals differences between consecutive terms of A102363. - David G. Williams (davidwilliams(AT)Paxway.com), Jan 23 2006
Row sums give A000079 (powers of 2).
Partial sums of rows give triangle A008949.
The triangle of the antidiagonals is A011973.
Another version: A108044.
Cf. A008277, A132311, A132312, A052216, A052217, A052218, A052219, A052220, A052221, A052222, A052223, A144225, A202750, A211226, A047999, A026729, A052553, A051920, A193242.
Triangle sums (see the comments): A000079 (Row1); A000007 (Row2); A000045 (Kn11 & Kn21); A000071 (Kn12 & Kn22); A001924 (Kn13 & Kn23); A014162 (Kn14 & Kn24); A014166 (Kn15 & Kn25); A053739 (Kn16 & Kn26); A053295 (Kn17 & Kn27); A053296 (Kn18 & Kn28); A053308 (Kn19 & Kn29); A053309 (Kn110 & Kn210); A001519 (Kn3 & Kn4); A011782 (Fi1 & Fi2); A000930 (Ca1 & Ca2); A052544 (Ca3 & Ca4); A003269 (Gi1 & Gi2); A055988 (Gi3 & Gi4); A034943 (Ze1 & Ze2); A005251 (Ze3 & Ze4). - Johannes W. Meijer, Sep 22 2010
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074, A228196, A228576.
Cf. A115940 (pandigital binomial coefficients C(m,k) with k>1).
Programs
-
Axiom
-- (start) )set expose add constructor OutputForm pascal(0,n) == 1 pascal(n,n) == 1 pascal(i,j | 0 < i and i < j) == pascal(i-1,j-1) + pascal(i,j-1) pascalRow(n) == [pascal(i,n) for i in 0..n] displayRow(n) == output center blankSeparate pascalRow(n) for i in 0..20 repeat displayRow i -- (end)
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)))); # Stefano Spezia, Dec 22 2018
-
Haskell
a007318 n k = a007318_tabl !! n !! k a007318_row n = a007318_tabl !! n a007318_list = concat a007318_tabl a007318_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Cf. http://www.haskell.org/haskellwiki/Blow_your_mind#Mathematical_sequences -- Reinhard Zumkeller, Nov 09 2011, Oct 22 2010
-
Magma
/* As triangle: */ [[Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A007318 := (n,k)->binomial(n,k);
-
Mathematica
Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 19 2004 *) Flatten[CoefficientList[CoefficientList[Series[1/(1 - x - x*y), {x, 0, 12}], x], y]] (* Mats Granvik, Jul 08 2014 *)
-
Maxima
create_list(binomial(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
C(n,k)=binomial(n,k) \\ Charles R Greathouse IV, Jun 08 2011
-
Python
# See Hobson link. Further programs: from math import prod,factorial def C(n,k): return prod(range(n,n-k,-1))//factorial(k) # M. F. Hasler, Dec 13 2019, updated Apr 29 2022, Feb 17 2023
-
Python
from math import comb, isqrt def A007318(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Nov 11 2024
-
Sage
def C(n,k): return Subsets(range(n), k).cardinality() # Ralf Stephan, Jan 21 2014
Formula
a(n, k) = C(n,k) = binomial(n, k).
C(n, k) = C(n-1, k) + C(n-1, k-1).
The triangle is symmetric: C(n,k) = C(n,n-k).
a(n+1, m) = a(n, m) + a(n, m-1), a(n, -1) := 0, a(n, m) := 0, n
C(n, k) = n!/(k!(n-k)!) if 0<=k<=n, otherwise 0.
C(n, k) = ((n-k+1)/k) * C(n, k-1) with C(n, 0) = 1. - Michael B. Porter, Mar 23 2025
G.f.: 1/(1-y-x*y) = Sum_(C(n, k)*x^k*y^n, n, k>=0)
G.f.: 1/(1-x-y) = Sum_(C(n+k, k)*x^k*y^n, n, k>=0).
G.f. for row n: (1+x)^n = Sum_{k=0..n} C(n, k)*x^k.
G.f. for column k: x^k/(1-x)^(k+1); [corrected by Werner Schulte, Jun 15 2022].
E.g.f.: A(x, y) = exp(x+x*y).
E.g.f. for column n: x^n*exp(x)/n!.
In general the m-th power of A007318 is given by: T(0, 0) = 1, T(n, k) = T(n-1, k-1) + m*T(n-1, k), where n is the row-index and k is the column; also T(n, k) = m^(n-k)*C(n, k).
Triangle T(n, k) read by rows; given by A000007 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Let P(n+1) = the number of integer partitions of (n+1); let p(i) = the number of parts of the i-th partition of (n+1); let d(i) = the number of different parts of the i-th partition of (n+1); let m(i, j) = multiplicity of the j-th part of the i-th partition of (n+1). Define the operator Sum_{i=1..P(n+1), p(i)=k+1} as the sum running from i=1 to i=P(n+1) but taking only partitions with p(i)=(k+1) parts into account. Define the operator Product_{j=1..d(i)} = product running from j=1 to j=d(i). Then C(n, k) = Sum_{p(i)=(k+1), i=1..P(n+1)} p(i)! / [Product_{j=1..d(i)} m(i, j)!]. E.g., C(5, 3) = 10 because n=6 has the following partitions with m=3 parts: (114), (123), (222). For their multiplicities one has: (114): 3!/(2!*1!) = 3; (123): 3!/(1!*1!*1!) = 6; (222): 3!/3! = 1. The sum is 3 + 6 + 1 = 10 = C(5, 3). - Thomas Wieder, Jun 03 2005
C(n, k) = Sum_{j=0..k} (-1)^j*C(n+1+j, k-j)*A000108(j). - Philippe Deléham, Oct 10 2005
G.f.: 1 + x*(1 + x) + x^3*(1 + x)^2 + x^6*(1 + x)^3 + ... . - Michael Somos, Sep 16 2006
Sum_{k=0..floor(n/2)} x^(n-k)*T(n-k,k) = A000007(n), A000045(n+1), A002605(n), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Sum_{k=0..floor(n/2)} (-1)^k*x^(n-k)*T(n-k,k) = A000007(n), A010892(n), A009545(n+1), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n), A084329(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, respectively. - Philippe Deléham, Sep 16 2006
C(n,k) <= A062758(n) for n > 1. - Reinhard Zumkeller, Mar 04 2008
C(t+p-1, t) = Sum_{i=0..t} C(i+p-2, i) = Sum_{i=1..p} C(i+t-2, t-1). A binomial number is the sum of its left parent and all its right ancestors, which equals the sum of its right parent and all its left ancestors. - Lee Naish (lee(AT)cs.mu.oz.au), Mar 07 2008
From Paul D. Hanna, Mar 24 2011: (Start)
Let A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n be the g.f. of the flattened triangle:
A(x) = 1 + (x + x^2) + (x^3 + 2*x^4 + x^5) + (x^6 + 3*x^7 + 3*x^8 + x^9) + ...
then A(x) equals the series Sum_{n>=0} (1+x)^n*x^n*Product_{k=1..n} (1-(1+x)*x^(2*k-1))/(1-(1+x)*x^(2*k));
also, A(x) equals the continued fraction 1/(1- x*(1+x)/(1+ x*(1-x)*(1+x)/(1- x^3*(1+x)/(1+ x^2*(1-x^2)*(1+x)/(1- x^5*(1+x)/(1+ x^3*(1-x^3)*(1+x)/(1- x^7*(1+x)/(1+ x^4*(1-x^4)*(1+x)/(1- ...))))))))).
These formulas are due to (1) a q-series identity and (2) a partial elliptic theta function expression. (End)
Row n of the triangle is the result of applying the ConvOffs transform to the first n terms of the natural numbers (1, 2, 3, ..., n). See A001263 or A214281 for a definition of this transformation. - Gary W. Adamson, Jul 12 2012
From L. Edson Jeffery, Aug 02 2012: (Start)
Row n (n >= 0) of the triangle is given by the n-th antidiagonal of the infinite matrix P^n, where P = (p_{i,j}), i,j >= 0, is the production matrix
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
... (End)
Row n of the triangle is also given by the n+1 coefficients of the polynomial P_n(x) defined by the recurrence P_0(x) = 1, P_1(x) = x + 1, P_n(x) = x*P_{n-1}(x) + P_{n-2}(x), n > 1. - L. Edson Jeffery, Aug 12 2013
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
(1+x)^n = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{i=0..k} k^(n-i)*binomial(k,i)*x^(n-i)/(n-i)!. - Vladimir Kruchinin, Oct 21 2013
E.g.f.: A(x,y) = exp(x+x*y) = 1 + (x+y*x)/( E(0)-(x+y*x)), where E(k) = 1 + (x+y*x)/(1 + (k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 08 2013
E.g.f.: E(0) -1, where E(k) = 2 + x*(1+y)/(2*k+1 - x*(1+y)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
G.f.: 1 + x*(1+x)*(1+x^2*(1+x)/(W(0)-x^2-x^3)), where W(k) = 1 + (1+x)*x^(k+2) - (1+x)*x^(k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Sum_{n>=0} C(n,k)/n! = e/k!, where e = exp(1), while allowing n < k where C(n,k) = 0. Also Sum_{n>=0} C(n+k-1,k)/n! = e * A000262(k)/k!, and for k>=1 equals e * A067764(k)/A067653(k). - Richard R. Forberg, Jan 01 2014
Sum_{n>=k} 1/C(n,k) = k/(k-1) for k>=1. - Richard R. Forberg, Feb 10 2014
From Tom Copeland, Apr 26 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result by A007318(x) = P(x). Then with :xD:^n = x^n*(d/dx)^n and B(n,x), the Bell polynomials (A008277),
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x)
B) P(:xD:) = exp(dP:xD:) = exp[(e^M-I):xD:] = exp[M*B(.,:xD:)] = exp[M*xD] = (I+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x] (cf. also A238363).
C) P(x)^y = P(y*x). P(2x) = A038207(x) = exp[M*B(.,2x)], the face vectors of the n-dim hypercubes.
D) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I+dP)^x*[St1]
E) = [St1]^(-1)*(I+dP)^x*[St1] = [St2]*(I+dP)^x*[St2]^(-1)
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and exp(x*M) = (I+dP)^x = Sum_{k>=0} C(x,k) dP^k. (End)
From Peter Bala, Dec 21 2014: (Start)
Recurrence equation: T(n,k) = T(n-1,k)*(n + k)/(n - k) - T(n-1,k-1) for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1. Note, changing the minus sign in the recurrence to a plus sign gives a recurrence for the square of the binomial coefficients - see A008459.
There is a relation between the e.g.f.'s of the rows and the diagonals of the triangle, namely, exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 3*x + 3*x^2/2! + x^3/3!) = 1 + 4*x + 10*x^2/2! + 20*x^3/3! + 35*x^4/4! + .... This property holds more generally for the Riordan arrays of the form ( f(x), x/(1 - x) ), where f(x) is an o.g.f. of the form 1 + f_1*x + f_2*x^2 + .... See, for example, A055248 and A106516.
Let P denote the present triangle. For k = 0,1,2,... define P(k) to be the lower unit triangular block array
/I_k 0\
\ 0 P/ having the k X k identity matrix I_k as the upper left block; in particular, P(0) = P. The infinite product P(0)*P(1)*P(2)*..., which is clearly well-defined, is equal to the triangle of Stirling numbers of the second kind A008277. The infinite product in the reverse order, that is, ...*P(2)*P(1)*P(0), is equal to the triangle of Stirling cycle numbers A130534. (End)
C(a+b,c) = Sum_{k=0..a} C(a,k)*C(b,b-c+k). This is a generalization of equation 1 from section 4.2.5 of the Prudnikov et al. reference, for a=b=c=n: C(2*n,n) = Sum_{k=0..n} C(n,k)^2. See Links section for animation of new formula. - Hermann Stamm-Wilbrandt, Aug 26 2015
The row polynomials of the Pascal matrix P(n,x) = (1+x)^n are related to the Bernoulli polynomials Br(n,x) and their umbral compositional inverses Bv(n,x) by the umbral relation P(n,x) = (-Br(.,-Bv(.,x)))^n = (-1)^n Br(n,-Bv(.,x)), which translates into the matrix relation P = M * Br * M * Bv, where P is the Pascal matrix, M is the diagonal matrix diag(1,-1,1,-1,...), Br is the matrix for the coefficients of the Bernoulli polynomials, and Bv that for the umbral inverse polynomials defined umbrally by Br(n,Bv(.,x)) = x^n = Bv(n,Br(.,x)). Note M = M^(-1). - Tom Copeland, Sep 05 2015
1/(1-x)^k = (r(x) * r(x^2) * r(x^4) * ...) where r(x) = (1+x)^k. - Gary W. Adamson, Oct 17 2016
Boas-Buck type recurrence for column k for Riordan arrays (see the Aug 10 2017 remark in A046521, also for the reference) with the Boas-Buck sequence b(n) = {repeat(1)}. T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} T(j, k), for n >= 1, with T(n, n) = 1. This reduces, with T(n, k) = binomial(n, k), to a known binomial identity (e.g, Graham et al. p. 161). - Wolfdieter Lang, Nov 12 2018
C((p-1)/a, b) == (-1)^b * fact_a(a*b-a+1)/fact_a(a*b) (mod p), where fact_n denotes the n-th multifactorial, a divides p-1, and the denominator of the fraction on the right side of the equation represents the modular inverse. - Isaac Saffold, Jan 07 2019
C(n,k-1) = A325002(n,k) - [k==n+1] = (A325002(n,k) + A325003(n,k)) / 2 = [k==n+1] + A325003(n,k). - Robert A. Russell, Oct 20 2020
From Hermann Stamm-Wilbrandt, May 13 2021: (Start)
Binomial sums are Fibonacci numbers A000045:
Sum_{k=0..n} C(n + k, 2*k + 1) = F(2*n).
Sum_{k=0..n} C(n + k, 2*k) = F(2*n + 1). (End)
C(n,k) = Sum_{i=0..k} A000108(i) * C(n-2i-1, k-i), for 0 <= k <= floor(n/2)-1. - Tushar Bansal, May 17 2025
Extensions
Checked all links, deleted 8 that seemed lost forever and were probably not of great importance. - N. J. A. Sloane, May 08 2018
A008277 Triangle of Stirling numbers of the second kind, S2(n,k), n >= 1, 1 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 10, 1, 1, 31, 90, 65, 15, 1, 1, 63, 301, 350, 140, 21, 1, 1, 127, 966, 1701, 1050, 266, 28, 1, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 1, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55, 1
Offset: 1
Comments
Also known as Stirling set numbers and written {n, k}.
S2(n,k) counts partitions of an n-set into k nonempty subsets.
From Manfred Boergens, Apr 07 2025: (Start)
With regard to the preceding comment:
For disjoint collections of subsets see A256894.
For arbitrary collections of subsets see A163353.
For arbitrary collections of nonempty subsets see A055154. (End)
Triangle S2(n,k), 1 <= k <= n, read by rows, given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Number of partitions of {1, ..., n+1} into k+1 nonempty subsets of nonconsecutive integers, including the partition 1|2|...|n+1 if n=k. E.g., S2(3,2)=3 since the number of partitions of {1,2,3,4} into three subsets of nonconsecutive integers is 3, i.e., 13|2|4, 14|2|3, 1|24|3. - Augustine O. Munagi, Mar 20 2005
Draw n cards (with replacement) from a deck of k cards. Let prob(n,k) be the probability that each card was drawn at least once. Then prob(n,k) = S2(n,k)*k!/k^n (see A090582). - Rainer Rosenthal, Oct 22 2005
Define f_1(x), f_2(x), ..., such that f_1(x)=e^x and for n = 2, 3, ..., f_{n+1}(x) = (d/dx)(x*f_n(x)). Then f_n(x) = e^x*Sum_{k=1..n} S2(n,k)*x^(k-1). - Milan Janjic, May 30 2008
From Peter Bala, Oct 03 2008: (Start)
S2(n,k) gives the number of 'patterns' of words of length n using k distinct symbols - see [Cooper & Kennedy] for an exact definition of the term 'pattern'. As an example, the words AADCBB and XXEGTT, both of length 6, have the same pattern of letters. The five patterns of words of length 3 are AAA, AAB, ABA, BAA and ABC giving row 3 of this table as (1,3,1).
Equivalently, S2(n,k) gives the number of sequences of positive integers (N_1,...,N_n) of length n, with k distinct entries, such that N_1 = 1 and N_(i+1) <= 1 + max{j = 1..i} N_j for i >= 1 (restricted growth functions). For example, Stirling(4,2) = 7 since the sequences of length 4 having 2 distinct entries that satisfy the conditions are (1,1,1,2), (1,1,2,1), (1,2,1,1), (1,1,2,2), (1,2,2,2), (1,2,2,1) and (1,2,1,2).
(End)
Number of combinations of subsets in the plane. - Mats Granvik, Jan 13 2009
S2(n+1,k+1) is the number of size k collections of pairwise disjoint, nonempty subsets of [n]. For example: S2(4,3)=6 because there are six such collections of subsets of [3] that have cardinality two: {(1)(23)},{(12)(3)}, {(13)(2)}, {(1)(2)}, {(1)(3)}, {(2)(3)}. - Geoffrey Critzer, Apr 06 2009
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1, k+1) equals the number of ways to choose 0 or more balls of each color in such a way that exactly (n-k) colors are chosen at least once, and no two colors are chosen the same positive number of times. - Matthew Vandermast, Nov 22 2010
S2(n,k) is the number of monotonic-labeled forests on n vertices with exactly k rooted trees, each of height one or less. See link "Counting forests with Stirling and Bell numbers" below. - Dennis P. Walsh, Nov 16 2011
If D is the operator d/dx, and E the operator xd/dx, Stirling numbers are given by: E^n = Sum_{k=1..n} S2(n,k) * x^k*D^k. - Hyunwoo Jang, Dec 13 2011
The Stirling polynomials of the second kind (a.k.a. the Bell / Touchard polynomials) are the umbral compositional inverses of the falling factorials (a.k.a. the Pochhammer symbol or Stirling polynomials of the first kind), i.e., binomial(Bell(.,x),n) = x^n/n! (cf. Copeland's 2007 formulas), implying binomial(xD,n) = binomial(Bell(.,:xD:),n) = :xD:^n/n! where D = d/dx and :xD:^n = x^n*D^n. - Tom Copeland, Apr 17 2014
S2(n,k) is the number of ways to nest n matryoshkas (Russian nesting dolls) so that exactly k matryoshkas are not contained in any other matryoshka. - Carlo Sanna, Oct 17 2015
The row polynomials R(n, x) = Sum_{k=1..n} S2(n, k)*x^k appear in the numerator of the e.g.f. of n-th powers, E(n, x) = Sum_{m>=0} m^n*x^m/m!, as E(n, x) = exp(x)*x*R(n, x), for n >= 1. - Wolfdieter Lang, Apr 02 2017
With offsets 0 for n and k this is the Sheffer product matrix A007318*A048993 denoted by (exp(t), (exp(t) - 1)) with e.g.f. exp(t)*exp(x*(exp(t) - 1)). - Wolfdieter Lang, Jun 20 2017
Number of words on k+1 unlabeled letters of length n+1 with no repeated letters. - Thomas Anton, Mar 14 2019
Also coefficients of moments of Poisson distribution about the origin expressed as polynomials in lambda. [Haight] (see also A331155). - N. J. A. Sloane, Jan 14 2020
k!*S2(n,k) is the number of surjections from an n-element set to a k-element set. - Jianing Song, Jun 01 2022
Examples
The triangle S2(n, k) begins: \ k 1 2 3 4 5 6 7 8 9 n \ 10 11 12 13 14 15 ... ---------------------------------------------------------------------------------- 1 | 1 2 | 1 1 3 | 1 3 1 4 | 1 7 6 1 5 | 1 15 25 10 1 6 | 1 31 90 65 15 1 7 | 1 63 301 350 140 21 1 8 | 1 127 966 1701 1050 266 28 1 9 | 1 255 3025 7770 6951 2646 462 36 1 10 | 1 511 9330 34105 42525 22827 5880 750 45 1 11 | 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1 12 | 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1 13 | 1 4095 261625 2532530 7508501 9321312 5715424 1899612 359502 39325 2431 78 1 14 | 1 8191 788970 10391745 40075035 63436373 49329280 20912320 5135130 752752 66066 3367 91 1 15 | 1 16383 2375101 42355950 210766920 420693273 408741333 216627840 67128490 12662650 1479478 106470 4550 105 1 ... ---------------------------------------------------------------------------------- x^4 = 1 x_(1) + 7 x_(2) + 6 x_(3) + 1 x_(4), where x_(k) = P(x,k) = k!*C(x,k). - _Daniel Forgues_, Jan 16 2016
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 103ff.
- B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- G. Boole, Finite Differences, 5th ed. New York, NY: Chelsea, 1970.
- C. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, 2002, Theorem 8.11, pp. 298-299.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
- F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- S.N. Elaydi, An Introduction to Difference Equations, 3rd ed. Springer, 2005.
- H. H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.7.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
- Frank Avery Haight, Handbook of the Poisson distribution, John Wiley, 1967. See pages 6,7.
- A. D. Korshunov, Asymptotic behavior of Stirling numbers of the second kind. (Russian) Metody Diskret. Analiz. No. 39 (1983), 24-41.
- E. Kuz'min and A. I. Shirshov: On the number e, pp. 111-119, eq.(6), in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999, p. 116, eq. (11).
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
- J. Stirling, The Differential Method, London, 1749; see p. 7.
Links
- T. D. Noe, First 100 rows, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Tewodros Amdeberhan, Valerio de Angelis, and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture, Advances in Combinatorics (2013), pp. 23-56.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 358-360
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv:1307.5624 [math.CO], 2013.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- H. Belbachir, M. Rahmani, and B. Sury, Sums Involving Moments of Reciprocals of Binomial Coefficients, J. Int. Seq. 14 (2011) #11.6.6.
- Hacene Belbachir and Mourad Rahmani, Alternating Sums of the Reciprocals of Binomial Coefficients, Journal of Integer Sequences, Vol. 15 (2012), #12.2.8.
- Edward A. Bender, Central and local limit theorems applied to asymptotic enumeration Journal of Combinatorial Theory, Series A, 15(1) (1973), 91-111. See Example 5.4.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. E. Bleick and Peter C. C. Wang, Asymptotics of Stirling numbers of the second kind, Proc. Amer. Math. Soc. 42 (1974), 575-580.
- W. E. Bleick and Peter C. C. Wang, Erratum to: "Asymptotics of Stirling numbers of the second kind" (Proc. Amer. Math. Soc. {42} (1974), 575-580), Proc. Amer. Math. Soc. 48 (1975), 518.
- B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 42.
- Khristo N. Boyadzhiev, Close encounters with the Stirling numbers of the second kind, arXiv:1806.09468 [math.HO], 2018.
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 8.
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- J. L. Cereceda, Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers, J. Int. Seq. 16 (2013) #13.3.2.
- Raphaël Cerf and Joseba Dalmau, The quasispecies distribution, arXiv:1609.05738 [q-bio.PE], 2016.
- Gi-Sang Cheon and Jin-Soo Kim, Stirling matrix via Pascal matrix, Lin. Alg. Appl. 329 (1-3) (2001) 49-59
- Sarthak Chimni and Ramin Takloo-Bighash, Counting subrings of Zn of non-zero co-rank, arXiv:1812.09564 [math.NT], 2018.
- C. Cooper and R. E. Kennedy, Patterns, automata and Stirling numbers of the second kind, Mathematics and Computer Education Journal, 26 (1992), 120-124.
- T. Copeland, Reciprocity and Umbral Witchcraft: An Eve with Stirling, Bernoulli, Archimedes, Euler, Laguerre, and Worpitzky, 2020.
- T. Copeland's Shadows of Simplicity, A Class of Differential Operators and the Stirling Numbers,2015; Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015; The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions, 2011; Mathemagical Forests, 2008; and Addendum to "Mathemagical Forests", 2010.
- R. M. Dickau, Stirling numbers of the second kind
- A. J. Dobson, A note on Stirling numbers of the second kind, Journal of Combinatorial Theory 5.2 (1968): 212-214.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019)
- G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- FindStat - Combinatorial Statistic Finder, The number of blocks in the set partition
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M. L. Glasser, A Generalized Apery Series, Journal of Integer Sequences, Vol. 15 (2012), #12.4.3.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- M. Griffiths, Close Encounters with Stirling Numbers of the Second Kind, The Mathematics Teacher, Vol. 106, No. 4, November 2012, pp. 313-317.
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5
- J. Gubeladze and J. Love, Vertex maps between simplices, cubes, and crosspolytopes, arXiv:1304.3775 [math.CO], 2013.
- L. C. Hsu, Note on an asymptotic expansion of the n-th difference of zero, Ann. Math. Statistics 19 (1948), 273-277.
- Yoshinari Inaba, Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.7.
- Wayne A. Johnson, Exponential Hilbert series of equivariant embeddings, arXiv:1804.04943 [math.RT], 2018.
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Preprint, 2016; also arXiv:1610.02965 [math.CO], 2016.
- Charles Knessl and Joseph B. Keller, Stirling number asymptotics from recursion equations using the ray method, Stud. Appl. Math. 84 (1991), no. 1, 43-56.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Elliott H. Lieb, Concavity properties and a generating function for Stirling numbers, Journal of Combinatorial Theory, Vol. 5, No. 2 (1968), pp. 203-206.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, El J. Combinat. 20 (1) (2013) P11
- S.-M. Ma, Toufik Mansour, and Matthias Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv:1308.0169 [math.CO], 2013.
- M. M. Mangontarum and J. Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq. 18 (2015) 15.9.8.
- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv:1501.07152 [math.CO], 2015.
- Toufik Mansour, A. Munagi, and Mark Shattuck, Recurrence Relations and Two-Dimensional Set Partitions , J. Int. Seq. 14 (2011) # 11.4.1
- Toufik Mansour and Mark Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- Mathematics Stack Exchange, Symmetric (under the swapping) recursions for Stirling numbers of both kinds, Aug 10 2025.
- Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- A. O. Munagi, k-Complementing Subsets of Nonnegative Integers, International Journal of Mathematics and Mathematical Sciences, 2005:2 (2005), 215-224.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- G. Nemes, On the Coefficients of the Asymptotic Expansion of n!, J. Int. Seq. 13 (2010), 10.6.6.
- A. F. Neto, Higher Order Derivatives of Trigonometric Functions, Stirling Numbers of the Second Kind, and Zeon Algebra, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.3.
- Arthur Nunge, Eulerian polynomials on segmented permutations, arXiv:1805.01797 [math.CO], 2018.
- OEIS Wiki, Sorting numbers
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 2.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003.
- K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp, and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. vol. 50, 083512 (2009)
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Fedor Petrov, Recursion for n-th row of Stirling numbers of the second kind independently of other rows, answer to question on MathOverflow (2025).
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
- Feng Qi, An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions, arXiv:1402.2361 [math.CO], 2014.
- S. Ramanujan, Notebook entry
- René Rietz, Optimization of Network Intrusion Detection Processes, 2018.
- G. Rzadkowski, Two formulas for Successive Derivatives and Their Applications, JIS 12 (2009) 09.8.2
- Benjamin Schreyer, Rigged Horse Numbers and their Modular Periodicity, arXiv:2409.03799 [math.CO], 2024. See p. 12.
- Raymond Scurr and Gloria Olive, Stirling numbers revisited, Discrete Math. 189 (1998), no. 1-3, 209--219. MR1637761 (99d:11019).
- Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Preprint (ResearchGate), 2014.
- Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
- Mark Shattuck, Combinatorial Proofs of Some Stirling Number Convolution Formulas, J. Int. Seq., Vol. 25 (2022), Article 22.2.2.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
- A. I. Solomon, P. Blasiak, G. Duchamp, A. Horzela, and K. A. Penson, Partition functions and graphs: A combinatorial approach, arXiv:quant-ph/0409082, 2004.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Jacob Sprittulla, The ordered Bell numbers as weighted sums of odd or even Stirling numbers of the second kind, arXiv:2109.12705 [math.CO], 2021.
- N. M. Temme, Asymptotic estimates of Stirling numbers, Stud. Appl. Math. 89 (1993), no. 3, 233-243.
- A. N. Timashev, On asymptotic expansions of Stirling numbers of the first and second kinds. (Russian) Diskret. Mat. 10 (1998), no. 3,148-159 translation in Discrete Math. Appl. 8 (1998), no. 5, 533-544.
- Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- Dennis Walsh, Counting forests with Stirling and Bell numbers
- Eric Weisstein's World of Mathematics, Differential Operator and Stirling Number of the Second Kind
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 17ff, 105ff.
- M. C. Wolf, Symmetric functions for non-commutative elements, Duke Math. J., 2 (1936), 626-637.
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a008277 n k = a008277_tabl !! (n-1) !! (k-1) a008277_row n = a008277_tabl !! (n-1) a008277_tabl = map tail $ a048993_tabl -- Reinhard Zumkeller, Mar 26 2012
-
J
n ((] (1 % !)) * +/@((^~ * (] (1 ^ |.)) * (! {:)@]) i.@>:)) k NB. _Stephen Makdisi, Apr 06 2016
-
Magma
[[StirlingSecond(n,k): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 22 2019
-
Maple
seq(seq(combinat[stirling2](n, k), k=1..n), n=1..10); # Zerinvary Lajos, Jun 02 2007 stirling_2 := (n,k) -> (1/k!) * add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k);
-
Mathematica
Table[StirlingS2[n, k], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v, May 23 2006 *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[1&, rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *) a[n_, n_] := 1; a[n_, 1] := 1; a[n_, k_] := a[n, k] = a[n-1, k-1] + k a[n-1, k]; Flatten@ Table[a[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Jun 12 2024 *) With[{m = 11}, Flatten@MapIndexed[Take[#, #2[[1]]] &, Transpose@ Table[Range[1, m]! Coefficient[(E^x-1)^k/k! + O[x]^(m+1), x, Range[1, m]], {k, 1, m}]]] (* Oliver Seipel, Jun 12 2024 *)
-
Maxima
create_list(stirling2(n+1,k+1),n,0,30,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
-
PARI
for(n=1,22,for(k=1,n,print1(stirling(n,k,2),", "));print()); \\ Joerg Arndt, Apr 21 2013
-
PARI
Stirling2(n,k)=sum(i=0,k,(-1)^i*binomial(k,i)*i^n)*(-1)^k/k! \\ M. F. Hasler, Mar 06 2012
-
Sage
stirling_number2 # Danny Rorabaugh, Oct 11 2015
Formula
S2(n, k) = k*S2(n-1, k) + S2(n-1, k-1), n > 1. S2(1, k) = 0, k > 1. S2(1, 1) = 1.
E.g.f.: A(x, y) = e^(y*e^x-y). E.g.f. for m-th column: (e^x-1)^m/m!.
S2(n, k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i)*binomial(k, i)*i^n.
Row sums: Bell number A000110(n) = Sum_{k=1..n} S2(n, k), n>0.
S(n, k) = Sum (i_1*i_2*...*i_(n-k)) summed over all (n-k)-combinations {i_1, i_2, ..., i_k} with repetitions of the numbers {1, 2, ..., k}. Also S(n, k) = Sum (1^(r_1)*2^(r_2)*...* k^(r_k)) summed over integers r_j >= 0, for j=1..k, with Sum{j=1..k} r_j = n-k. [Charalambides]. - Wolfdieter Lang, Aug 15 2019.
A019538(n, k) = k! * S2(n, k).
A028248(n, k) = (k-1)! * S2(n, k).
For asymptotics see Hsu (1948), among other sources.
Sum_{n>=0} S2(n, k)*x^n = x^k/((1-x)(1-2x)(1-3x)...(1-kx)).
Let P(n) = the number of integer partitions of n (A000041), p(i) = the number of parts of the i-th partition of n, d(i) = the number of distinct parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, and Sum_{i=1..P(n), p(i)=m} = sum running from i=1 to i=P(n) but taking only partitions with p(i)=m parts into account. Then S2(n, m) = Sum_{i=1..P(n), p(i)=m} n!/(Product_{j=1..p(i)} p(i, j)!) * 1/(Product_{j=1..d(i)} m(i, j)!). For example, S2(6, 3) = 90 because n=6 has the following partitions with m=3 parts: (114), (123), (222). Their complexions are: (114): 6!/(1!*1!*4!) * 1/(2!*1!) = 15, (123): 6!/(1!*2!*3!) * 1/(1!*1!*1!) = 60, (222): 6!/(2!*2!*2!) * 1/(3!) = 15. The sum of the complexions is 15+60+15 = 90 = S2(6, 3). - Thomas Wieder, Jun 02 2005
Sum_{k=1..n} k*S2(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Nov 01 2006
Recurrence: S2(n+1,k) = Sum_{i=0..n} binomial(n,i)*S2(i,k-1). With the starting conditions S2(n,k) = 1 for n = 0 or k = 1 and S2(n,k) = 0 for k = 0 we have the closely related recurrence S2(n,k) = Sum_{i=k..n} binomial(n-1,i-1)*S2(i-1,k-1). - Thomas Wieder, Jan 27 2007
Representation of Stirling numbers of the second kind S2(n,k), n=1,2,..., k=1,2,...,n, as special values of hypergeometric function of type (n)F(n-1): S2(n,k)= (-1)^(k-1)*hypergeom([ -k+1,2,2,...,2],[1,1,...,1],1)/(k-1)!, i.e., having n parameters in the numerator: one equal to -k+1 and n-1 parameters all equal to 2; and having n-1 parameters in the denominator all equal to 1 and the value of the argument equal to 1. Example: S2(6,k)= seq(evalf((-1)^(k-1)*hypergeom([ -k+1,2,2,2,2,2],[1,1,1,1,1],1)/(k-1)!),k=1..6)=1,31,90,65,15,1. - Karol A. Penson, Mar 28 2007
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n}E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
n-th row = leftmost column of nonzero terms of A127701^(n-1). Also, (n+1)-th row of the triangle = A127701 * n-th row; deleting the zeros. Example: A127701 * [1, 3, 1, 0, 0, 0, ...] = [1, 7, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
The row polynomials are given by D^n(e^(x*t)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A147315 and A094198. See also A185422. - Peter Bala, Nov 25 2011
Let f(x) = e^(e^x). Then for n >= 1, 1/f(x)*(d/dx)^n(f(x)) = 1/f(x)*(d/dx)^(n-1)(e^x*f(x)) = Sum_{k=1..n} S2(n,k)*e^(k*x). Similar formulas hold for A039755, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
S2(n,k) = A048993(n,k), 1 <= k <= n. - Reinhard Zumkeller, Mar 26 2012
O.g.f. for the n-th diagonal is D^n(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
n*i!*S2(n-1,i) = Sum_{j=(i+1)..n} (-1)^(j-i+1)*j!/(j-i)*S2(n,j). - Leonid Bedratyuk, Aug 19 2012
G.f.: (1/Q(0)-1)/(x*y), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
From Tom Copeland, Apr 17 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x).
With Bell(n,x)=B(n,x) defined above, D = d/dx, and :xD:^n = x^n*D^n, a Dobinski formula gives umbrally f(y)^B(.,x) = e^(-x)*e^(f(y)*x). Then f(y)^B(.,:xD:)g(x) = [f(y)^(xD)]g(x) = e^[-(1-f(y)):xD:]g(x) = g[f(y)x].
In particular, for f(y) = (1+y),
A) (1+y)^B(.,x) = e^(-x)*e^((1+y)*x) = e^(x*y) = e^[log(1+y)B(.,x)],
B) (I+dP)^B(.,x) = e^(x*dP) = P(x) = e^[x*(e^M-I)]= e^[M*B(.,x)] with dP = A132440, M = A238385-I = log(I+dP), and I = identity matrix, and
C) (1+dP)^(xD) = e^(dP:xD:) = P(:xD:) = e^[(e^M-I):xD:] = e^[M*xD] with action e^(dP:xD:)g(x) = g[(I+dP)*x].
D) P(x)^m = P(m*x), which implies (Sum_{k=1..m} a_k)^j = B(j,m*x) where the sum is umbrally evaluated only after exponentiation with (a_k)^q = B(.,x)^q = B(q,x). E.g., (a1+a2+a3)^2=a1^2+a2^2+a3^2+2(a1*a2+a1*a3+a2*a3) = 3*B(2,x)+6*B(1,x)^2 = 9x^2+3x = B(2,3x).
E) P(x)^2 = P(2x) = e^[M*B(.,2x)] = A038207(x), the face vectors of the n-Dim hypercubes.
(End)
As a matrix equivalent of some inversions mentioned above, A008277*A008275 = I, the identity matrix, regarded as lower triangular matrices. - Tom Copeland, Apr 26 2014
O.g.f. for the n-th diagonal of the triangle (n = 0,1,2,...): Sum_{k>=0} k^(k+n)*(x*e^(-x))^k/k!. Cf. the generating functions of the diagonals of A039755. Also cf. A112492. - Peter Bala, Jun 22 2014
Floor(1/(-1 + Sum_{n>=k} 1/S2(n,k))) = A034856(k-1), for k>=2. The fractional portion goes to zero at large k. - Richard R. Forberg, Jan 17 2015
From Daniel Forgues, Jan 16 2016: (Start)
Let x_(n), called a factorial term (Boole, 1970) or a factorial polynomial (Elaydi, 2005: p. 60), denote the falling factorial Product_{k=0..n-1} (x-k). Then, for n >= 1, x_(n) = Sum_{k=1..n} A008275(n,k) * x^k, x^n = Sum_{k=1..n} T(n,k) * x_(k), where A008275(n,k) are Stirling numbers of the first kind.
For n >= 1, the row sums yield the exponential numbers (or Bell numbers): Sum_{k=1..n} T(n,k) = A000110(n), and Sum_{k=1..n} (-1)^(n+k) * T(n,k) = (-1)^n * Sum_{k=1..n} (-1)^k * T(n,k) = (-1)^n * A000587(n), where A000587 are the complementary Bell numbers. (End)
Sum_{k=1..n} k*S2(n,k) = A138378(n). - Alois P. Heinz, Jan 07 2022
O.g.f. for the m-th column: x^m/(Product_{j=1..m} 1-j*x). - Daniel Checa, Aug 25 2022
S2(n,k) ~ (k^n)/k!, for fixed k as n->oo. - Daniel Checa, Nov 08 2022
S2(2n+k, n) ~ (2^(2n+k-1/2) * n^(n+k-1/2)) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^(n+k)), where c = -LambertW(-2 * exp(-2)). - Miko Labalan, Dec 21 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(-k,j)*T(n,k+j-1) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link).
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(n,j)*T(n-j+1,k)*(-1)^j for 1 <= k < n with T(n,n) = 1. (End)
A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0
Comments
This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014
Examples
exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ... Triangle begins: 1 0 1 1 0 1 2 3 0 1 9 8 6 0 1 44 45 20 10 0 1 265 264 135 40 15 0 1 1854 1855 924 315 70 21 0 1 14833 14832 7420 2464 630 112 28 0 1 133496 133497 66744 22260 5544 1134 168 36 0 1 ... From _Peter Bala_, Feb 13 2017: (Start) The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins 0 0 0 1 0 0 2 3 0 0 6 8 6 0 0 24 30 20 10 0 0 ... It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
- Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
Links
- Alois P. Heinz, Rows n = 0..150, flattened (first 51 rows from T. D. Noe)
- Taha Akbari, Prove using combinatorics Sum_{k=0..n} (k-1)^2 D_n(k)=n!, Mathematics Stack Exchange, Jun 06 2017
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Stefano Capparelli, Margherita Maria Ferrari, Emanuele Munarini, and Norma Zagaglia Salvi, A Generalization of the "Problème des Rencontres", J. Int. Seq. 21 (2018), #18.2.8.
- Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469 [cs.DM], 2016. See Table 1.
- S. K. Das and N. Deo, Rencontres graphs: a family of bipartite graphs, Fib. Quart., Vol. 25, No. 3, August 1987, 250-262.
- Robert W. Donley Jr, Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
- FindStat - Combinatorial Statistic Finder, The number of adjacencies of a permutation, 0 appended, The number of fixed points of a permutation
- I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
- J. Liese and J. Remmel, Q-analogues of the number of permutations with k-excedances, PU. M. A. Vol. 21 (2010), No. 2, pp. 285-320 (see E_{n,0}(x) in Table 1 p. 291).
- L. Takacs, On the "problème des ménages", Discr. Math. 36 (3) (1981) 289-297, Table 2.
- Wikipedia, Rencontres numbers.
- Index entries for sequences related to permutations with fixed points
Crossrefs
Programs
-
Haskell
a008290 n k = a008290_tabl !! n !! k a008290_row n = a008290_tabl !! n a008290_tabl = map reverse a098825_tabl -- Reinhard Zumkeller, Dec 16 2013
-
Maple
T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)* (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0)) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Mar 15 2013
-
Mathematica
a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *) T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *) T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *) T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1]; Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
-
PARI
{T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
Formula
T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
Extensions
Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000
A007840 Number of factorizations of permutations of n letters into ordered cycles.
1, 1, 3, 14, 88, 694, 6578, 72792, 920904, 13109088, 207360912, 3608233056, 68495486640, 1408631978064, 31197601660080, 740303842925184, 18738231641600256, 503937595069600896, 14349899305396086912, 431322634732516137216, 13646841876634025159424
Offset: 0
Keywords
Comments
a(n) is the number of ways to seat n people at an unspecified number of circular tables and then linearly order the nonempty tables. - Geoffrey Critzer, Mar 18 2009
The terms of this sequence for n >= 1 are the row sums of A008275^2, the unsigned version of A039814. - Peter Bala, Jul 22 2014
Signed sequence is the base for an Appell sequence of polynomials with the e.g.f. e^(x*t)/[log(1+t) + 1] = exp(P(.,x),t) that is the umbral compositional inverse for A238385, reverse of A111492, i.e., umbrally evaluated UP(n,P(.,t))= x^n = P(n,UP(.,t)) where UP(n,t) are the polynomials of A238385. Umbrally evaluated means letting (A(.,t))^n = A(n,t) after substituting A for the independent variable of the polynomial. - Tom Copeland, Nov 15 2014
a(n) is the number of unimodal rooted forests on n labeled nodes (i.e., those forests that avoid the patterns 213 and 312). - Kassie Archer, Aug 30 2018
Number of permutations of [n] where fixed points at index j are j-colored and all other points are unicolored. - Alois P. Heinz, Apr 24 2020
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..420
- K. Anders and K. Archer, Rooted forests that avoid sets of permutations, arXiv:1607.03046 [math.CO], 2016-2017.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 119.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 122
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
Programs
-
Maple
a:= proc(n) a(n):= n!*`if`(n=0, 1, add(a(k)/(k!*(n-k)), k=0..n-1)) end: seq(a(n), n=0..25); # Alois P. Heinz, Nov 06 2012
-
Mathematica
Table[Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 18 2009 *)
-
PARI
a(n)=n!*polcoeff(1/(1+log(1-x +x*O(x^n))),n) /* Paul D. Hanna, Jul 19 2006 */
-
PARI
{a(n)=local(CF=1+x*O(x)); for(k=0, n-1, CF=1/((n-k)-((n-k+1)\2)^2*x*CF)); n!*polcoeff(1/(1-x*CF), n)} /* Paul D. Hanna, Jul 19 2006 */
-
Sage
def A007840_list(len): f, R, C = 1, [1], [1]+[0]*len for n in (1..len): f *= n for k in range(n, 0, -1): C[k] = -C[k-1]*((k-1)/k if k>1 else 1) C[0] = sum((-1)^k*C[k] for k in (1..n)) R.append(C[0]*f) return R print(A007840_list(20)) # Peter Luschny, Feb 21 2016
Formula
a(n) = Sum_{k=1..n} k! * s(n, k), s(n, k) = unsigned Stirling number of first kind; E.g.f. 1/(1+log(1-z)).
For n>0, a(n) is the permanent of the n X n matrix with entries a(i, i) = i and a(i, j) = 1 elsewhere. - Philippe Deléham, Dec 09 2003
a(n) = A052860(n)/n for n >= 1.
a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n >= 1 with a(0)=1. - Paul D. Hanna, Jul 19 2006
E.g.f.: B(A(x)) where B(x) = 1/(1-x) and A(x) = log(1/(1-x)). - Geoffrey Critzer, Mar 18 2009
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A006252. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1+log(1-x)) = 1/(1 - x/(1 - x/(2 - x/(3 - 4*x/(4 - 4*x/(5 - 9*x/(6 - 9*x/(7 - 16*x/(8 - 16*x/(9 - ...)))))))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n) ~ n! * exp(n)/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 21 2013
Extensions
Extended June 1995
A038207 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).
1, 2, 1, 4, 4, 1, 8, 12, 6, 1, 16, 32, 24, 8, 1, 32, 80, 80, 40, 10, 1, 64, 192, 240, 160, 60, 12, 1, 128, 448, 672, 560, 280, 84, 14, 1, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 1024, 5120, 11520, 15360, 13440, 8064, 3360, 960, 180, 20, 1
Offset: 0
Comments
This infinite matrix is the square of the Pascal matrix (A007318) whose rows are [ 1,0,... ], [ 1,1,0,... ], [ 1,2,1,0,... ], ...
As an upper right triangle, table rows give number of points, edges, faces, cubes,
4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009
Number of different partial sums of 1+[1,1,2]+[2,2,3]+[3,3,4]+[4,4,5]+... with entries that are zero removed. - Jon Perry, Jan 01 2004
Row sums are powers of 3 (A000244), antidiagonal sums are Pell numbers (A000129). - Gerald McGarvey, May 17 2005
Riordan array (1/(1-2x), x/(1-2x)). - Paul Barry, Jul 28 2005
T(n,k) is the number of elements of the Coxeter group B_n with descent set contained in {s_k}, 0<=k<=n-1. For T(n,n), we interpret this as the number of elements of B_n with empty descent set (since s_n does not exist). - Elizabeth Morris (epmorris(AT)math.washington.edu), Mar 01 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then T(n,k) = the number of elements (x,y) of S for which y has exactly k more elements than x. - Ross La Haye, Oct 12 2007
T(n,k) is number of paths in the first quadrant going from (0,0) to (n,k) using only steps B=(1,0) colored blue, R=(1,0) colored red and U=(1,1). Example: T(3,2)=6 because we have BUU, RUU, UBU, URU, UUB and UUR. - Emeric Deutsch, Nov 04 2007
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), and two kinds of step (1,0). - Joerg Arndt, Jul 01 2011
T(i,j) is the number of i-permutations of {1,2,3} containing j 1's. Example: T(2,1)=4 because we have 12, 13, 21 and 31; T(3,2)=6 because we have 112, 113, 121, 131, 211 and 311. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in expansion of (2+x)^n. - N-E. Fahssi, Apr 13 2008
Triangle T(n,k), read by rows, given by [2,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009
Eigensequence of the triangle = A004211: (1, 3, 11, 49, 257, 1539, ...). - Gary W. Adamson, Feb 07 2010
f-vectors ("face"-vectors) for n-dimensional cubes [see e.g., Hoare]. (This is a restatement of Bottomley's above.) - Tom Copeland, Oct 19 2012
With P = Pascal matrix, the sequence of matrices I, A007318, A038207, A027465, A038231, A038243, A038255, A027466 ... = P^0, P^1, P^2, ... are related by Copeland's formula below to the evolution at integral time steps n= 0, 1, 2, ... of an exponential distribution exp(-x*z) governed by the Fokker-Planck equation as given in the Dattoli et al. ref. below. - Tom Copeland, Oct 26 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 12 2013
Unsigned diagonals of A133156 are rows of this array. - Tom Copeland, Oct 11 2014
Omitting the first row, this is the production matrix for A039683, where an equivalent differential operator can be found. - Tom Copeland, Oct 11 2016
T(n,k) is the number of functions f:[n]->[3] with exactly k elements mapped to 3. Note that there are C(n,k) ways to choose the k elements mapped to 3, and there are 2^(n-k) ways to map the other (n-k) elements to {1,2}. Hence, by summing T(n,k) as k runs from 0 to n, we obtain 3^n = Sum_{k=0..n} T(n,k). - Dennis P. Walsh, Sep 26 2017
Since this array is the square of the Pascal lower triangular matrix, the row polynomials of this array are obtained as the umbral composition of the row polynomials P_n(x) of the Pascal matrix with themselves. E.g., P_3(P.(x)) = 1 P_3(x) + 3 P_2(x) + 3 P_1(x) + 1 = (x^3 + 3 x^2 + 3 x + 1) + 3 (x^2 + 2 x + 1) + 3 (x + 1) + 1 = x^3 + 6 x^2 + 12 x + 8. - Tom Copeland, Nov 12 2018
T(n,k) is the number of 2-compositions of n+1 with some zeros allowed that have k zeros; see the Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
Also the convolution triangle of A000079. - Peter Luschny, Oct 09 2022
Examples
Triangle begins with T(0,0): 1; 2, 1; 4, 4, 1; 8, 12, 6, 1; 16, 32, 24, 8, 1; 32, 80, 80, 40, 10, 1; ... - corrected by _Clark Kimberling_, Aug 05 2011 Seen as an array read by descending antidiagonals: [0] 1, 2, 4, 8, 16, 32, 64, 128, 256, ... [A000079] [1] 1, 4, 12, 32, 80, 192, 448, 1024, 2304, ... [A001787] [2] 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, ... [A001788] [3] 1, 8, 40, 160, 560, 1792, 5376, 15360, 42240, ... [A001789] [4] 1, 10, 60, 280, 1120, 4032, 13440, 42240, 126720, ... [A003472] [5] 1, 12, 84, 448, 2016, 8064, 29568, 101376, 329472, ... [A054849] [6] 1, 14, 112, 672, 3360, 14784, 59136, 219648, 768768, ... [A002409] [7] 1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, ... [A054851] [8] 1, 18, 180, 1320, 7920, 41184, 192192, 823680, 3294720, ... [A140325] [9] 1, 20, 220, 1760, 11440, 64064, 320320, 1464320, 6223360, ... [A140354]
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 155.
- H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- Peter Bala, A note on the diagonals of a proper Riordan Array
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
- John Cartan, Starmaze: Cartan's Triangle.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras.
- B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), 109-121.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular Structure 376 (1996), 495-505.
- G. Dattoli, A. Mancho, M. Quattromini and A. Torre, Exponential operators, generalized polynomials and evolution problems, Radiation Physics and Chemistry 61 (2001), 99-108. [From _Tom Copeland_, Oct 25 2012]
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- W. G. Harter, Representations of multidimensional symmetries in networks, J. Math. Phys., 15 (1974), 2016-2021.
- Russell Jay Hendel, A Method for Uniformly Proving a Family of Identities, arXiv:2107.03549 [math.CO], 2021.
- Graham Hoare, Hypercubes and Chebyshev, Math. Gaz. 74 (470) (1990), 375-377.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Katarzyna Kril and Wojciech Mlotkowski, Permutations of Type B with Fixed Number of Descents and Minus Signs, The Electronic Journal of Combinatorics, Vol. 26(1) (2019), Article P1.27.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 27.
- Wikipedia, Hypercube.
Crossrefs
Programs
-
GAP
Flat(List([0..15], n->List([0..n], k->Binomial(n, k)*2^(n-k)))); # Stefano Spezia, Nov 21 2018
-
Haskell
a038207 n = a038207_list !! n a038207_list = concat $ iterate ([2,1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Haskell
a038207' n k = a038207_tabl !! n !! k a038207_row n = a038207_tabl !! n a038207_tabl = iterate f [1] where f row = zipWith (+) ([0] ++ row) (map (* 2) row ++ [0]) -- Reinhard Zumkeller, Feb 27 2013
-
Magma
/* As triangle */ [[(&+[Binomial(n,i)*Binomial(i,k): i in [k..n]]): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Nov 16 2018
-
Maple
for i from 0 to 12 do seq(binomial(i, j)*2^(i-j), j = 0 .. i) end do; # yields sequence in triangular form - Emeric Deutsch, Nov 04 2007 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> 2^(n-1)); # Peter Luschny, Oct 09 2022
-
Mathematica
Table[CoefficientList[Expand[(y + x + x^2)^n], y] /. x -> 1, {n, 0,10}] // TableForm (* Geoffrey Critzer, Nov 20 2011 *) Table[Binomial[n,k]2^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, May 22 2020 *)
-
PARI
{T(n, k) = polcoeff((x+2)^n, k)}; /* Michael Somos, Apr 27 2000 */
-
Sage
def A038207_triangle(dim): M = matrix(ZZ,dim,dim) for n in range(dim): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+2*M[n-1,k] return M A038207_triangle(9) # Peter Luschny, Sep 20 2012
Formula
T(n, k) = Sum_{i=0..n} binomial(n,i)*binomial(i,k).
T(n, k) = (-1)^k*A065109(n,k).
G.f.: 1/(1-2*z-t*z). - Emeric Deutsch, Nov 04 2007
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
From the formalism of A133314, the e.g.f. for the row polynomials of A038207 is exp(x*t)*exp(2x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-2x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*2x). The results generalize for 2 replaced by any number. - Tom Copeland, Aug 18 2008
Sum_{k=0..n} T(n,k)*x^k = (2+x)^n. - Philippe Deléham, Dec 15 2009
n-th row is obtained by taking pairwise sums of triangle A112857 terms starting from the right. - Gary W. Adamson, Feb 06 2012
T(n,n) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) for kJon Perry, Oct 11 2012
The e.g.f. for the n-th row is given by umbral composition of the normalized Laguerre polynomials A021009 as p(n,x) = L(n, -L(.,-x))/n! = 2^n L(n, -x/2)/n!. E.g., L(2,x) = 2 -4*x +x^2, so p(2,x)= (1/2)*L(2, -L(.,-x)) = (1/2)*(2*L(0,-x) + 4*L(1,-x) + L(2,-x)) = (1/2)*(2 + 4*(1+x) + (2+4*x+x^2)) = 4 + 4*x + x^2/2. - Tom Copeland, Oct 20 2012
From Tom Copeland, Oct 26 2012: (Start)
Let P and P^T be the Pascal matrix and its transpose and H= P^2= A038207.
Then with D the derivative operator,
exp(x*z/(1-2*z))/(1-2*z)= exp(2*z D_z z) e^(x*z)= exp(2*D_x (x D_x)) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T
= Sum_{n>=0} z^n * 2^n Lag_n(-x/2)= exp[z*EF(.,x)], an o.g.f. for the f-vectors (rows) of A038207 where EF(n,x) is an e.g.f. for the n-th f-vector. (Lag_n(x) are the un-normalized Laguerre polynomials.)
Conversely,
exp(z*(2+x))= exp(2D_x) exp(x*z)= exp(2x) exp(x*z)
= (1 x x^2 x^3 ...) H^T (1 z z^2/2! z^3/3! ...)^T
= (1 z z^2/2! z^3/3! ...) H (1 x x^2 x^3 ...)^T
= exp(z*OF(.,x)), an e.g.f for the f-vectors of A038207 where
OF(n,x)= (2+x)^n is an o.g.f. for the n-th f-vector.
(End)
G.f.: R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ (1+y))*x/((2*k+2+ (1+y))*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
A038207 = exp[M*B(.,2)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). B(n,2) = A001861(n). - Tom Copeland, Apr 17 2014
T = (A007318)^2 = A112857*|A167374| = |A118801|*|A167374| = |A118801*A167374| = |P*A167374*P^(-1)*A167374| = |P*NpdP*A167374|. Cf. A118801. - Tom Copeland, Nov 17 2016
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial 2^n*Sum_{k = 0..n} binomial(n,k)*x^k/k!. For example, the e.g.f. for the third subdiagonal is exp(x)*(8 + 24*x + 12*x^2 + 4*x^3/3) = 8 + 32*x + 80*x^2/2! + 160*x^3/3! + .... - Peter Bala, Mar 05 2017
T(3*k+2,k) = T(3*k+2,k+1), T(2*k+1,k) = 2*T(2*k+1,k+1). - Yuchun Ji, May 26 2020
From Robert A. Russell, Aug 05 2020: (Start)
G.f. for column k: x^k / (1-2*x)^(k+1).
E.g.f. for column k: exp(2*x) * x^k / k!. (End)
Also the array A(n, k) read by descending antidiagonals, where A(n, k) = (-1)^n*Sum_{j= 0..n+k} binomial(n + k, j)*hypergeom([-n, j+1], [1], 1). - Peter Luschny, Nov 09 2021
A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).
1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0
Comments
Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016
Examples
a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are 01: [{1,2}] [ ]; 02: [ ] [{1,2}]; 03: [{1}] [{2}]; 04: [{2}] [{1}]; 05: [{1} {2}] [ ]; 06: [ ] [{1} {2}]. - _Peter Bala_, Mar 23 2013
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..558 (terms 0..100 from T. D. Noe)
- M. Aigner, A characterization of the Bell numbers, Discr. Math., 205 (1999), 207-210.
- Michael Anshelevich, Product formulas on posets, Wick products, and a correction for the q-Poisson process, arXiv:1708.08034 [math.OA], 2017, See Proposition 34 p. 25.
- Diego Arcis, Camilo González, and Sebastián Márquez, Symmetric functions in noncommuting variables in superspace, arXiv:2312.00574 [math.CO], 2023.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
- Jacques Carlier and Corinne Lucet, A decomposition algorithm for network reliability evaluation. In First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz). Discrete Appl. Math. 65 (1996), 141-156 (see page 152 and Fig 6).
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- Wan-Ming Guo and Lily Li Liu, Asymptotic normality of the Stirling-Whitney-Riordan triangle, Filomat (2023) Vol. 37, No. 9, 2923-2934.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 66 [broken link?]
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- G. Labelle et al., Stirling numbers interpolation using permutations with forbidden subsequences, Discrete Math. 246 (2002), 177-195.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 20.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- J. Riordan, Letter to N. J. A. Sloane, Oct. 1970
- J. Riordan, Letter, Oct 31 1977
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1. - From _N. J. A. Sloane_, Jan 04 2013
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Crossrefs
Programs
-
Magma
[&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
-
Maple
A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014 # second Maple program: b:= proc(n, m) option remember; `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Aug 04 2021
-
Mathematica
Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *) mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *) Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
-
PARI
{a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
-
PARI
{a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
-
Sage
expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
Formula
a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]
A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 3628800
Offset: 0
Comments
Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - N. J. A. Sloane, Mar 31 2016
Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - Paul Barry, Mar 27 2007
From Tom Copeland, Nov 01 2007: (Start)
T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
4) B(x) = (1-xDx)^(-1) A(x), formally
5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
From Peter Bala, Jul 10 2008: (Start)
This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0.....................1...............2.......3......4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
(n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - Gary W. Adamson, May 03 2009
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - Johannes W. Meijer, Oct 07 2009
T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - Dennis P. Walsh, Jan 24 2011
T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - Geoffrey Critzer, Dec 11 2011
T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - Tom Copeland, Dec 03 2013
For interpretations in terms of colored necklaces, see A213936 and A173333. - Tom Copeland, Aug 18 2016
See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016
Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - Andrey Zabolotskiy, Dec 16 2016
The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - Peter Bala, Feb 13 2017
Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] = 1/(I - A132440), where I is the identity matrix. - Tom Copeland, Jul 03 2017
If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - Michael Somos, Sep 19 2021
Examples
Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ... For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011 Triangle begins: 1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1 The production matrix is: 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 1, 1, 24, 24, 12, 4, 1, 1, 120, 120, 60, 20, 5, 1, 1, 720, 720, 360, 120, 30, 6, 1, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 1 which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's. Inverse begins: 1, -1, 1, 0, -2, 1, 0, 0, -3, 1, 0, 0, 0, -4, 1, 0, 0, 0, 0, -5, 1, 0, 0, 0, 0, 0, -6, 1, 0, 0, 0, 0, 0, 0, -7, 1
Links
- Reinhard Zumkeller, Rows n = 0..149 of triangle, flattened
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 3.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 5.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 17.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011, also J. Int. Seq. 14 (2011) 11.6.7.
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Tom Copeland, Goin' with the Flow: Logarithm of the Derivative Operator Part V, 2014.
- T. Copeland, Compositional inverse operators and Sheffer sequences, 2016.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
- Othman Echi, Binomial coefficients and Nasir al-Din al-Tusi, Scientific Research and Essays Vol.1 (2), 28-32 November 2006.
- H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010 (eqn. 10.35, p.49).
- A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Peter Luschny, Variants of Variations.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Dennis Walsh, A note on permutations with cyclic constraints
- Wikipedia, Sheffer sequence
Crossrefs
Programs
-
Haskell
a094587 n k = a094587_tabl !! n !! k a094587_row n = a094587_tabl !! n a094587_tabl = map fst $ iterate f ([1], 1) where f (row, i) = (map (* i) row ++ [1], i + 1) -- Reinhard Zumkeller, Jul 04 2012
-
Maple
T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9); # Johannes W. Meijer, Oct 07 2009, revised Nov 25 2012 # Alternative: Note that if you leave out 'abs' you get A021009. T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: # Peter Luschny, Dec 30 2021
-
Mathematica
Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* Geoffrey Critzer, Dec 11 2011 *)
-
Sage
def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list() for n in (0..7): print(A094587_row(n)) # Peter Luschny, Sep 28 2017
Formula
T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - Peter Bala, Jul 10 2008
From Johannes W. Meijer, Oct 07 2009: (Start)
The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - Peter Bala, Oct 28 2011
A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - Tom Copeland, Oct 25 2012
From Peter Bala, Aug 28 2013: (Start)
The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
From Tom Copeland, Apr 21 & 26, and Aug 13 2014: (Start)
T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
From Tom Copeland, Nov 18 2015: (Start)
Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
(End)
The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - Tom Copeland, Aug 17 2016
The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - Tom Copeland, Nov 10 2016
From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - Tom Copeland, Nov 22 2016
From Peter Bala, Feb 18 2017: (Start)
G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) = x^n + n*R(n-1, x), for n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from Peter Bala, Aug 28 2013). - Wolfdieter Lang, Dec 23 2019
T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - Werner Schulte, Jul 26 2022
Extensions
Edited by Johannes W. Meijer, Oct 07 2009
New description from Dennis P. Walsh, Jan 24 2011
A132440 Infinitesimal Pascal matrix: generator (lower triangular matrix representation) of the Pascal matrix, the classical operator xDx, iterated Laguerre transforms, associated matrices of the list partition transform and general Euler transformation for sequences.
0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0
Offset: 0
Comments
Let M(t) = exp(t*T) = lim_{n->oo} (1 + t*T/n)^n.
Pascal matrix = [ binomial(n,k) ] = M(1) = exp(T), truncating the series gives the n X n submatrices.
Inverse Pascal matrix = M(-1) = exp(-T) = matrix for inverse binomial transform.
A(j) = T^j / j! equals the matrix [binomial(n,k) * delta(n-k-j)] where delta(n) = 1 if n=0 and vanishes otherwise (Kronecker delta); i.e., A(j) is a matrix with all the terms 0 except for the j-th lower (or main for j=0) diagonal, which equals that of the Pascal triangle. Hence the A(j)'s form a linearly independent basis for all matrices of the form [binomial(n,k) * d(n-k)] which include as a subset the invertible associated matrices of the list partition transform (LPT) of A133314.
For sequences with b(0) = 1, umbrally,
M[b(.)] = exp(b(.)*T) = [ binomial(n,k) * b(n-k) ] = matrices associated to b by LPT.
[M[b(.)]]^(-1) = exp(c(.)*T) = [ binomial(n,k) * c(n-k) ] = matrices associated to c, where c = LPT(b) . Or,
[M[b(.)]]^(-1) = exp[LPT(b(.))*T] = LPT[M(b(.))] = M[LPT(b(.))]= M[c(.)].
This is related to xDx, the iterated Laguerre transform and the general Euler transformation of a sequence through the comments in A132013 and A132014 and the relation [Sum_{k=0..n} binomial(n,k) * b(n-k) * d(k)] = M(b)*d, (n-th term). See also A132382.
If b(n,x) is a binomial type Sheffer sequence, then M[b(.,x)]*s(y) = s(x+y) when s(y) = (s(0,y),s(1,y),s(2,y),...) is an array for a Sheffer sequence with the same delta operator as b(n,x) and [M[b(.,x)]]^(-1) is given by the formulas above with b(n) replaced by b(n,x) as b(0,x)=1 for a binomial-type Sheffer sequence.
T = I - A132013 and conversely A132013 = I - T, which is the matrix representation for the iterated mixed order Laguerre transform characterized in A132013 (and A132014).
The inverse is 1/(I-T) = I + T + T^2 + T^3 + ... = [A132013]^(-1) = A094587 with the associated sequence (0!,1!,2!,3!,...) under the LPT.
And 1/(I-T)^2 = I + 2*T + 3*T^2 + 4*T^3 + ... = [A132013]^(-2) = A132159 with the associated sequence (1!,2!,3!,4!,...) under the LPT.
The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or e.g.f.'s EA(x) and EB(x).
1) b(0) = 0, b(n) = n * a(n-1),
2) B(x) = xDx A(x)
3) B(x) = x * Lag(1,-:xD:) A(x)
4) EB(x) = x * EA(x) where D is the derivative w.r.t. x, (:xD:)^j = x^j*D^j and Lag(n,x) is the Laguerre polynomial.
So the exponentiated operator can be characterized as
5) exp(t*T) A(x) = exp(t*xDx) A(x) = [Sum_{n=0,1,...} (t*x)^n * Lag(n,-:xD:)] A(x) = [exp{[t*u/(1-t*u)]*:xD:} / (1-t*u) ] A(x) (eval. at u=x) = A[x/(1-t*x)]/(1-t*x), a generalized Euler transformation for an o.g.f.,
6) exp(t*T) EA(x) = exp(t*x)*EA(x) = exp[(t+a(.))*x], gen. Euler trf. for an e.g.f.
7) exp(t*T) * a = M(t) * a = [Sum_{k=0..n} binomial(n,k) * t^(n-k) * a(k)].
The umbral extension of formulas 5, 6 and 7 gives formally
8) exp[c(.)*T] A(x) = exp(c(.)*xDx) A(x) = [Sum_{n>=0} (c(.)*x)^n * Lag(n,-:xD:)] A(x) = [exp{[c(.)*u/(1-c(.)*u)]*:xD:} / (1-c(.)*u) ] A(x) (eval. at u=x) = A[x/(1-c(.)*x)]/(1-c(.)*x), where the umbral evaluation should be applied only after a power series in c is obtained,
9) exp[c(.)*T] EA(x) = exp(c(.)*x)*EA(x) = exp[(c(.)+a(.))*x]
10) exp[c(.)*T] * a = M[c(.)] * a = [Sum_{k=0..n} binomial(n,k) * c(n-k) * a(k)] .
The n X n principal submatrix of T is nilpotent, in particular, [Tsub_n]^(n+1) = 0, n=0,1,2,3,....
Note (xDx)^n = x^n D^n x^n = x^n n! (:Dx:)^n/n! = x^n n! Lag(n,-:xD:).
The operator xDx is an important, classical operator explored by among others Dattoli, Al-Salam, Carlitz and Stokes and even earlier investigators.
For a recent treatment of xDx, DxD and more general operators see the paper "Laguerre-type derivatives: Dobinski relations and combinatorial identities". - Karol A. Penson, Sep 15 2009
See Copeland's link for generalized Laguerre functions and connection to fractional differ-integrals in exercises through (:Dx:)^a/a!=(D^a x^a)/a!. - Tom Copeland, Nov 17 2011
From Tom Copeland, Apr 25 2014: (Start)
Conjugation or "similarity" transformations of [dP]=A132440 have an operator interpretation (cf. A074909 and A238363):
In general, select two operators A and B such that A^n = F1(n,B) and B^n = F2(n,A); then A^n = F1(n,F2(.,A)) and B^n = F2(n,F1(.,B)), evaluated umbrally, i.e., F1(n,F2(.,x))=F2(n,F1(.,x))=x^n, implying the polynomials F1 and F2 are an umbral compositional inverse pair.
One such pair are the Bell polynomials Bell(n,x) and falling factorials (x)_n with Bell(n,:xD:)=(xD)^n and (xD)_n=:xD:^n (cf. A074909). Another are the Laguerre polynomials LN(n,x)= n!*Lag(n,x) (A021009), which are umbrally self-inverse, with LN(n,-:xD:)=:Dx:^n and LN(n,:Dx:)= (-:xD:)^n with :Dx:^n=D^n*x^n.
Evaluating, for n>=0, the operator derivative d(B^n)/dA = d(F2(n,A))/dA in the basis B^n, i.e., with A^n finally replaced by F1(n,B), or A^n=F1(.,B)^n=F1(n,B), is equivalent to the matrix conjugation
A) [F2]*[dP]*[F1]
B) = [F2]*[dP]*[F2]^(-1)
C) = [F1]^(-1)*[dP]*[F1],
where [F1] is the lower triangular matrix with the n-th row the coefficients of F1(n,x) and analogously for [F2].
So, given the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose, form the power series V(x)=Rv*Cv(x).
D) dV(B)/dA = Rv * [F2]*[dP]*[F1] * Cv(B).
E) With A=D and B=D, F1(n,x)=F2(n,x)=x^n and [F1]=[F2]=I. Then d(B^n)/dA = d(D^n)/dD = n * D^(n-1); therefore, consistently [F2]*[dP]*[F1] = [dP] and dV(D)/dD = Rv * [dP] * Cv(D). (End)
Examples
Matrix T begins 0; 1,0; 0,2,0; 0,0,3,0; 0,0,0,4,0; ...
References
- T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC, 2015, (x^n D^n x^n on p. 187).
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, Duke Math. Jour., vol. 31 (1964), pp. 127-142.
- Tom Copeland, Fractional Calculus, Gamma Classes, the Riemann Zeta Function, and an Appell Pair of Sequences.
- Tom Copeland, Goin' with the Flow: Logarithm of the Derivative Operator.
- Tom Copeland, Infinigens, the Pascal Pyramid, and the Witt and Virasoro Algebras.
- Tom Copeland, The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions (pdf).
- Tom Copeland, Mathemagical Forests.
- Tom Copeland, Mellin Interpolation of Differential Ops and Associated Infinigens and Appell Polynomials: The Ordered, Laguerre, and Scherk-Witt-Lie Diff Ops.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009. (Cf. Viennot's Laguerre histoires.)
- K. A. Penson, P. Blasiak, A. Horzela, G.H.E. Duchamp and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, arXiv:0904.0369 [math-ph], 2009.
- K. A. Penson, P. Blasiak, A. Horzela, G.H.E. Duchamp and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, Journal of Mathematical Physics vol. 50, (2009) 083512.
- G. Stokes, Note on certain formulae in the calculus of operations, Proceedings of the Royal Society of Edinburgh, IX, pp. 101-102, 1876.
Programs
-
Maple
seq(op([0$i,i]),i=1..20); # Robert Israel, Oct 02 2015
-
Mathematica
Table[PadLeft[{n, 0}, n+1], {n, 0, 11}] // Flatten (* Jean-François Alcover, Apr 30 2014 *)
Formula
T = log(P) with the Pascal matrix P:=A007318. This should be read as T_N = log(P_N) with P_N the N X N matrix P, N>=2. Because P_N is lower triangular with all diagonal elements 1, the series log(1_N-(1_N-P_N)) stops after N-1 terms because (1_N-P_N)^N is the 0_N-matrix. - Wolfdieter Lang, Oct 14 2010
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), the matrix T represents the action of R*L*R in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1). - Tom Copeland, Oct 25 2012
From Tom Copeland, Apr 26 2014: (Start)
A) T = exp(A238385-I) - I
B) = [St1]*P*[St2] - I
C) = [St1]*P*[St1]^(-1) - I
D) = [St2]^(-1)*P*[St2] - I
E) = [St2]^(-1)*P*[St1]^(-1) - I
where P=A007318, [St1]=padded A008275 just as [St2]=A048993=padded A008277, and I=identity matrix. (End)
From Robert Israel, Oct 02 2015: (Start)
G.f. Sum_{k >= 1} k x^((k+3/2)^2/2 - 17/8) is related to Jacobi theta functions.
If 8*n+17 = y^2 is a square, then a(n) = (y-3)/2, otherwise a(n) = 0. (End)
Extensions
Missing zero added in table by Tom Copeland, Feb 25 2014
A003713 Expansion of e.g.f. log(1/(1+log(1-x))).
0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544
Offset: 0
Comments
a(n+1) is the permanent of the n X n matrix M with M(i,i) = i+1, other entries 1. - Philippe Deléham, Nov 03 2005
Supernecklaces of type III (cycles of cycles). - Ricardo Bittencourt, May 05 2013
Unsigned coefficients for the raising / creation operator R for the Appell sequence of polynomials A238385: R = x + 1 - 2 D + 7 D^2/2! - 35 D^3/3! + ... . - Tom Copeland, May 09 2016
References
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 125.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 34
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 298
Crossrefs
Programs
-
Maple
series(ln(1/(1+ln(1-x))),x,17); with (combstruct): M[ 1798 ] := [ A,{A=Cycle(Cycle(Z))},labeled ]:
-
Mathematica
With[{nn=20},CoefficientList[Series[Log[1/(1+Log[1-x])],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 15 2012 *) Table[Sum[(-1)^(n-k) * (k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(-log(1+log(1-x+x*O(x^n))),n))
Formula
Sum_{k=1..n} (k-1)!*|Stirling1(n, k)|. - Vladeta Jovovic, Sep 14 2003
a(n+1) = n! * Sum_{k=0..n} A007840(k)/k!. E.g., a(4) = 228 = 24*(1/1 + 1/1 + 3/2 + 14/6 + 88/24) = 24 + 24 + 36 + 56 + 88. - Philippe Deléham, Dec 10 2003
a(n) ~ (n-1)! * (exp(1)/(exp(1)-1))^n. - Vaclav Kotesovec, Jun 21 2013
a(0) = 0; a(n) = (n-1)! + Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * a(n-k). - Ilya Gutkovskiy, Jul 18 2020
Extensions
Thanks to Paul Zimmermann for comments.
A238363 Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.
1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1
Comments
Let D=d/dx and [A,B]=A·B-B·A. Then each row corresponds to the coefficients of the operators :xD:^k = x^k D^k in the expansion of the commutator [log(D),:xD:^n]=[-log(x),:xD:^n]=sum(k=0 to n-1, a(n,k) :xD:^k). The e.g.f. is derived from [log(D), exp(t:xD:)]=[-log(x), exp(t:xD:)]= log(1+t)exp(t:xD:), using the shift property exp(t:xD:)f(x)=f((1+t)x).
The reversed unsigned array is A111492.
See the mathoverflow link and link therein to an associated mathstackexchange question for other formulas for log(D). In addition, R_x = log(D) = -log(x) + c - sum[n=1 to infnty, (-1)^n 1/n :xD:^n/n!]=
-log(x) + Psi(1+xD) = -log(x) + c + Ein(:xD:), where c is the Euler-Mascheroni constant, Psi(x), the digamma function, and Ein(x), a breed of the exponential integrals (cf. Wikipedia). The :xD:^k ops. commute; therefore, the commutator reduces to the -log(x) term.
Also the n-th row corresponds to the expansion of d[(xD)!/(xD-n)!]/d(xD) = d[:xD:^n]/d(xD) in the operators :xD:^k, or, equivalently, the coefficients of x in d[z!/(z-n)!]/dz=d[St1(n,z)]]/dz evaluated umbrally with z=St2(.,x), i.e., z^n replaced by St2(n,x), where St1(n,x) and St2(n,x) are the signed and unsigned Stirling polynomials of the first (A008275) and second (A008277) kinds. The derivatives of the unsigned St1 are A028421. See examples. This formalism follows from the relations between the raising and lowering operators presented in the MathOverflow link and the Pincherle derivative. The results can be generalized through the operator relations in A094638, which are related to the celebrated Witt Lie algebra and pseudodifferential operators / symbols, to encompass other integral arrays.
A002741(n)*(-1)^(n+1) (row sums), A002104(n)*(-1)^(n+1) (alternating row sums). Column sequences: A133942(n-1), A001048(n-1), A238474, ... - Wolfdieter Lang, Mar 01 2014
Add an additional head row of zeros to the lower triangular array and denote it as T (with initial indexing in columns and rows being 0). Let dP = A132440, the infinitesimal generator for the Pascal matrix, and I, the identity matrix, then exp(T)=I+dP, i.e., T=log(I+dP). Also, (T_n)^n=0, where T_n denotes the n X n submatrix, i.e., T_n is nilpotent of order n. - Tom Copeland, Mar 01 2014
Any pair of lowering and raising ops. L p(n,x) = n·p(n-1,x) and R p(n,x) = p(n+1,x) satisfy [L,R]=1 which implies (RL)^n = St2(n,:RL:), and since (St2(·,u))!/(St2(·,u)-n)!= u^n, when evaluated umbrally, d[(RL)!/(RL-n)!]/d(RL) = d[:RL:^n]/d(RL) is well-defined and gives A238363 when the LHS is reduced to a sum of :RL:^k terms, exactly as for L=d/dx and R=x above. (Note that R_x above is a raising op. different from x, with associated L_x=-xD.) - Tom Copeland, Mar 02 2014
For relations to colored forests, disposition of flags on flagpoles, and the colorings of the vertices of the complete graphs K_n, encoded in their chromatic polynomials, see A130534. - Tom Copeland, Apr 05 2014
The unsigned triangle, omitting the main diagonal, gives A211603. See also A092271. Related to the infinitesimal generator of A008290. - Peter Bala, Feb 13 2017
Examples
The first few row polynomials are p(1,x)= 1 p(2,x)= -1 + 2x p(3,x)= 2 - 3x + 3x^2 p(4,x)= -6 + 8x - 6x^2 + 4x^3 p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4 ........... For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and 3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k. The triangle a(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 1: 1 2: -1 2 3: 2 -3 3 4: -6 8 -6 4 5: 24 -30 20 -10 5 6: -120 144 -90 40 -15 6 7: 720 -840 504 -210 70 -21 7 8: -5040 5760 -3360 1344 -420 112 -28 8 9: 40320 -45360 25920 -10080 3024 -756 168 -36 9 10: -362880 403200 -226800 86400 -25200 6048 -1260 240 -45 10 ... formatted by _Wolfdieter Lang_, Mar 01 2014 -----------------------------------------------------------------------
Links
- Tom Copeland, Riemann zeta function at positive integers and an Appell sequence of polynomials, 2012.
- Tom Copeland, Goin' with the Flow: Logarithm of the Derivative Operator, 2014.
- Tom Copeland, Bernoulli, Blissard, and Lie meet Stirling and the simplices: State number operators and normal ordering, 2014.
- Tom Copeland, Compositional inverse operators and Sheffer sequences, 2016.
Programs
-
Mathematica
a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)
Formula
a(n,k) = (-1)^(n-k-1)*n!/((n-k)*k!) for k=0 to (n-1).
E.g.f.: log(1+t)*exp(x*t).
E.g.f.for unsigned array: -log(1-t)*exp(x*t).
The lowering op. for the row polynomials is L=d/dx, i.e., L p(n,x) = n*p(n-1,x).
An e.g.f. for an unsigned related version is -log(1+t)*exp(x*t)/t= exp(t*s(·,x)) with s(n,x)=(-1)^n * p(n+1,-x)/(n+1). Let L=d/dx and R= x-(1/((1-D)log(1-D))+1/D),then R s(n,x)= s(n+1,x) and L s(n,x)= n*s(n-1,x), defining a special Sheffer sequence of polynomials, an Appell sequence. So, R (-1)^(n-1) p(n,-x)/n = (-1)^n p(n+1,-x)/(n+1).
From Tom Copeland, Apr 17 2014: (Start)
Dividing each diagonal by its first element (-1)^(n-1)*(n-1)! yields the reverse of A104712.
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x). Then with dP = A132440, M = padded A238363 = A238385-I, I = identity matrix, and (B(.,x))^n = B(n,x) = the n-th Bell polynomial Bell(n,x) of A008277,
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x), and
B) P(:xD:)=exp(dP:xD:)=exp[(e^M-I):xD:]=exp[M*B(.,:xD:)]=exp[M*xD]=
(1+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x].
C) P(x)^m = P(m*x). P(2x) = A038207(x) = exp[M*B(.,2x)], face vectors of n-D hypercubes. (End)
From Tom Copeland, Apr 26 2014: (Start)
B) = [St1]*[dP]*[St1]^(-1)
C) = [St2]^(-1)*[dP]*[St2]
D) = [St2]^(-1)*[dP]*[St1]^(-1),
E) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I + dP)^x*[St1].
F) exp(x*M) = [St1]*P(x)*[St2] = (I + dP)^x,
where (I + dP)^x = sum(k>=0, C(x,k)*dP^k).
Let the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose. Form the power series V(x)= Rv * Cv(x) and W(y) := V(x.) evaluated umbrally with (x.)^n = x_n = (y)_n = y!/(y-n)!. Then
G) U(:xD:) = dV(:xD:)/d(xD) = dW(xD)/d(xD) evaluated with (xD)^n = Bell(n,:xD:),
H) U(x) = dV(x.)/dy := dW(y)/dy evaluated with y^n=y_n=Bell(n,x), and
The Bernoulli polynomials Ber_n(x) are related to the polynomials q_n(x) = p(n+1,x) / (n+1) with the e.g.f. [log(1+t)/t] e^(xt) (cf. s_n (x) above) as Ber_n(x) = St2_n[q.(St1.(x))], umbrally, or [St2]*[q]*[St1], in matrix form. Since q_n(x) is an Appell sequence of polynomials, q_n(x) = [log(1+D_x)/D_x]x^n. - Tom Copeland, Nov 06 2016
Extensions
Pincherle formalism added by Tom Copeland, Feb 27 2014
Comments