A006252
Expansion of e.g.f. 1/(1 - log(1+x)).
Original entry on oeis.org
1, 1, 1, 2, 4, 14, 38, 216, 600, 6240, 9552, 319296, -519312, 28108560, -176474352, 3998454144, -43985078784, 837126163584, -12437000028288, 237195036797184, -4235955315745536, 85886259443020800, -1746536474655406080, 38320721602434017280, -864056965711935974400
Offset: 0
- G. Pólya, Induction and Analogy in Mathematics. Princeton Univ. Press, 1954, p. 9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Beáta Bényi and Daniel Yaqubi, Mixed coloured permutations, arXiv:1903.07450 [math.CO], 2019.
- Takao Komatsu and Amalia Pizarro-Madariaga, Harmonic numbers associated with inversion numbers in terms of determinants, Turkish Journal of Mathematics (2019) Vol. 43, 340-354.
- E. J. Weniger, Summation of divergent power series by means of factorial series arXiv:1005.0466v1 [math.NA], 2010.
-
a006252 0 = 1
a006252 n = sum $ a048594_row n -- Reinhard Zumkeller, Mar 02 2014
-
With[{nn=30},CoefficientList[Series[1/(1-Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(1/(1-log(1+x+x*O(x^n))),n))
-
{a(n)=local(CF=1+x*O(x^n)); for(k=0, n-1, CF=1/((n-k+1)-(n-k)*x+(n-k+1)^2*x*CF)); n!*polcoeff(1+x/(1-x+x*CF), n, x)} /* Paul D. Hanna, Dec 31 2011 */
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
-
def A006252_list(len):
f, R, C = 1, [1], [1]+[0]*len
for n in (1..len):
f *= n
for k in range(n, 0, -1):
C[k] = -C[k-1]*((k-1)/(k) if k>1 else 1)
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0]*f)
return R
print(A006252_list(24)) # Peter Luschny, Feb 21 2016
A003713
Expansion of e.g.f. log(1/(1+log(1-x))).
Original entry on oeis.org
0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544
Offset: 0
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 125.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 34
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 298
-
series(ln(1/(1+ln(1-x))),x,17);
with (combstruct): M[ 1798 ] := [ A,{A=Cycle(Cycle(Z))},labeled ]:
-
With[{nn=20},CoefficientList[Series[Log[1/(1+Log[1-x])],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 15 2012 *)
Table[Sum[(-1)^(n-k) * (k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
-
a(n)=if(n<0,0,n!*polcoeff(-log(1+log(1-x+x*O(x^n))),n))
A048594
Triangle T(n,k) = k! * Stirling1(n,k), 1<=k<=n.
Original entry on oeis.org
1, -1, 2, 2, -6, 6, -6, 22, -36, 24, 24, -100, 210, -240, 120, -120, 548, -1350, 2040, -1800, 720, 720, -3528, 9744, -17640, 21000, -15120, 5040, -5040, 26136, -78792, 162456, -235200, 231840, -141120, 40320, 40320, -219168, 708744, -1614816, 2693880, -3265920, 2751840, -1451520, 362880
Offset: 1
Oleg Marichev (oleg(AT)wolfram.com)
Triangle begins
1;
-1, 2;
2, -6, 6;
-6, 22, -36, 24;
24, -100, 210, -240, 120; ...
The 2nd derivative of 1/log(x) is -2/x^3*log(x)^2 - 6/x^3*log(x)^3 - 6/x^3*log(x)^4.
-
a048594 n k = a048594_tabl !! (n-1) !! (k-1)
a048594_row n = a048594_tabl !! (n-1)
a048594_tabl = map snd $ iterate f (1, [1]) where
f (i, xs) = (i + 1, zipWith (-) (zipWith (*) [1..] ([0] ++ xs))
(map (* i) (xs ++ [0])))
-- Reinhard Zumkeller, Mar 02 2014
-
/* As triangle: */ [[Factorial(k)*StirlingFirst(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 15 2015
-
with(combinat): A048594 := (n,k)->k!*stirling1(n,k);
-
Flatten[Table[k!*StirlingS1[n,k], {n,10}, {k,n}]] (* Harvey P. Dale, Aug 28 2011 *)
Join @@ CoefficientRules[ -Table[ D[ 1/Log[z], {z, n}], {n, 9}] /. Log[z] -> -Log[z], {1/z, 1/Log[z]}, "NegativeLexicographic"][[All, All, 2]] (* Oleg Marichev (oleg(AT)wolfram.com) and Maxim Rytin (m.r(AT)inbox.ru); submitted by Robert G. Wilson v, Aug 29 2011 *)
-
{T(n, k)= if(k<1 || k>n, 0, stirling(n, k)* k!)} /* Michael Somos Apr 11 2007 */
-
def A048594(n,k): return (-1)^(n-k)*factorial(k)*stirling_number1(n,k)
flatten([[A048594(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 24 2023
A088500
Expansion of e.g.f. 1/(1+2*log(1-x)).
Original entry on oeis.org
1, 2, 10, 76, 772, 9808, 149552, 2660544, 54093696, 1237306560, 31446049728, 879119219328, 26811313164672, 885830291432448, 31518653868782592, 1201567079771092992, 48860409899753588736, 2111033523652100407296
Offset: 0
-
CoefficientList[Series[1/(1+2*Log[1-x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 03 2015 *)
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1+2*log(1-x)))) \\ Michel Marcus, Apr 26 2021
A039814
Matrix square of Stirling-1 triangle A008275.
Original entry on oeis.org
1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 1
Triangle begins:
1;
-2, 1;
7, -6, 1;
-35, 40, -12, 1;
228, -315, 130, -20, 1;
-1834, 2908, -1485, 320, -30, 1;
...
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1,k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016
-
max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
rows = 9;
t = Table[(-1)^n*Sum[k!*Abs[StirlingS1[n+1, k+1]], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n, k) = sum(j=0, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Feb 13 2022
A052820
Expansion of e.g.f. 1/(1 - x + log(1 - x)).
Original entry on oeis.org
1, 2, 9, 62, 572, 6604, 91526, 1480044, 27353448, 568731648, 13138994112, 333895239072, 9256507508112, 278000959058016, 8991458660924112, 311585506208924064, 11517363473843526912, 452332548042633835776
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Seiichi Manyama, Table of n, a(n) for n = 0..395
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 785
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Cascaded Analytic Nonlinear Systems, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011, pp. 3830-3835.
- M. Thitsa and W. S. Gray, On the radius of convergence of cascaded analytic nonlinear systems: The SISO case, System Theory (SSST), 2011 IEEE 43rd Southeastern Symposium on, 14-16 March 2011, pp. 30-36.
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, 2012, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012
-
spec := [S,{C=Cycle(Z),B=Union(C,Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[1/(1-x+Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
A052801
A simple grammar: labeled pairs of sequences of cycles.
Original entry on oeis.org
1, 2, 8, 46, 342, 3108, 33324, 411360, 5741856, 89379120, 1534623936, 28804923024, 586686138384, 12885385945248, 303537419684064, 7633673997722496, 204125888803996800, 5782960189212871680
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Cycle(Z),B=Sequence(C),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[1/(1+Log[1-x])^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
makelist(sum((-1)^(n-k)*stirling1(n, k)*(k+1)!, k, 0, n), n, 0, 17); /* Bruno Berselli, May 25 2011 */
A225479
Triangle read by rows, the ordered Stirling cycle numbers, T(n, k) = k!* s(n, k); n >= 0 k >= 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 22, 36, 24, 0, 24, 100, 210, 240, 120, 0, 120, 548, 1350, 2040, 1800, 720, 0, 720, 3528, 9744, 17640, 21000, 15120, 5040, 0, 5040, 26136, 78792, 162456, 235200, 231840, 141120, 40320, 0, 40320, 219168, 708744, 1614816
Offset: 0
[n\k][0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 0, 1,
[2] 0, 1, 2,
[3] 0, 2, 6, 6,
[4] 0, 6, 22, 36, 24,
[5] 0, 24, 100, 210, 240, 120,
[6] 0, 120, 548, 1350, 2040, 1800, 720.
...
T(4,2) = 22: The table below shows the compositions of 4 into two parts.
n = 4 Composition Weight 4!*Weight
3 + 1 1/3 8
1 + 3 1/3 8
2 + 2 1/2*1/2 6
= =
total 22
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 245.
-
A225479 := proc(n, k) option remember;
if k > n or k < 0 then return(0) fi;
if n = 0 and k = 0 then return(1) fi;
k*A225479(n-1, k-1) + (n-1)*A225479(n-1, k) end;
for n from 0 to 9 do seq(A225479(n, k), k = 0..n) od;
-
t[n_, k_] := k!*StirlingS1[n, k] // Abs; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
-
T(n,k)={k!*abs(stirling(n,k,1))} \\ Andrew Howroyd, Jul 27 2020
-
def A225479(n, k): return factorial(k)*stirling_number1(n, k)
for n in (0..6): [A225479(n,k) for k in (0..n)]
A075181
Coefficients of certain polynomials (rising powers).
Original entry on oeis.org
1, 2, 1, 6, 6, 2, 24, 36, 22, 6, 120, 240, 210, 100, 24, 720, 1800, 2040, 1350, 548, 120, 5040, 15120, 21000, 17640, 9744, 3528, 720, 40320, 141120, 231840, 235200, 162456, 78792, 26136, 5040, 362880, 1451520, 2751840, 3265920, 2693880, 1614816
Offset: 1
Triangle starts:
1;
2,1;
6,6,2;
24,36,22,6;
...
n=2: (x^2*log(x)^3)*(d^2/d^x^2)(1/log(x)) = 2 + log(x).
- Vincenzo Librandi, Rows n = 1..100, flattened
- Y.-Z. Huang, J. Lepowsky and L. Zhang, A logarithmic generalization of tensor product theory for modules for a vertex operator algebra, arXiv:math/0311235 [math.QA], 2003; Internat. J. Math. 17 (2006), no. 8, 975-1012. See page 984 eq. (3.9) MR2261644.
- D. Lubell, Problem 10992, problems and solutions, Amer. Math. Monthly 110 (2003) p. 155. Equal Sums of Reciprocal Products: 10992 (2004) pp. 827-829.
-
seq(seq(k!*abs(Stirling1(n,k)),k=n..1,-1),n=1..10); # Robert Israel, Jul 12 2015
-
Table[ Table[ k!*StirlingS1[n, k] // Abs, {k, 1, n}] // Reverse, {n, 1, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
-
{T(n, k)= if(k<0 || k>=n, 0, (-1)^k* stirling(n, n-k)* (n-k)!)} /* Michael Somos Apr 11 2007 */
A320096
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * k! * k^n, with a(0)=1.
Original entry on oeis.org
1, 1, 9, 212, 9418, 675014, 71092502, 10334690232, 1982433606264, 485065343565072, 147433546709109408, 54493722609862927632, 24069397682825072219040, 12520250948941157091235344, 7575515622713954399390221008, 5275250174853125498317783254528
Offset: 0
-
Flatten[{1, Table[Sum[(-1)^(n-k)*StirlingS1[n, k]*k!*k^n, {k, 1, n}], {n, 1, 20}]}]
nmax = 20; CoefficientList[Series[1 + Sum[(-Log[1 - k*x])^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 04 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^n*stirling(n, k, 1)); \\ Seiichi Manyama, Feb 02 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k*x))^k))) \\ Seiichi Manyama, Feb 02 2022
Showing 1-10 of 104 results.
Comments