A346978
Expansion of e.g.f. 1 / sqrt(1 + 2 * log(1 - x)).
Original entry on oeis.org
1, 1, 4, 26, 234, 2694, 37812, 626352, 11962164, 258787812, 6255195168, 167072685240, 4886611129320, 155335056242040, 5332298685827760, 196590247328769120, 7747254471910795920, 324986515253994589200, 14458392906960271354560, 679977065168639138610720
Offset: 0
-
nmax = 19; CoefficientList[Series[1/Sqrt[1 + 2 Log[1 - x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] (2 k - 1)!!, {k, 0, n}], {n, 0, 19}]
A343707
a(n) = 1 + 2 * Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 3, 15, 113, 1145, 14539, 221663, 3943281, 80173345, 1833831619, 46606646175, 1302954958689, 39737420405753, 1312901360002283, 46714233470065999, 1780859204826798401, 72416689888874547969, 3128792006916853876291, 143132514626658326870767, 6911638338982428907738641
Offset: 0
-
a[n_] := a[n] = 1 + 2 Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Exp[x]/(1 + 2 Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
N=20; x='x+O('x^N); Vec(serlaplace(exp(x)/(1+2*log(1-x)))) \\ Seiichi Manyama, Oct 20 2021
A367474
Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^2.
Original entry on oeis.org
1, 4, 28, 272, 3360, 50256, 881616, 17734944, 402278496, 10155145344, 282329361024, 8570500876032, 282047266728192, 10001430040080384, 380152962804068352, 15418451851593596928, 664633482628021493760, 30342827915683778027520
Offset: 0
-
a(n) = sum(k=0, n, 2^k*(k+1)!*abs(stirling(n, k, 1)));
A320079
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 14, 76, 222, 488, 910, ...
0, 88, 772, 3132, 8824, 20080, ...
0, 694, 9808, 55242, 199456, 553870, ...
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A367475
Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^3.
Original entry on oeis.org
1, 6, 54, 636, 9204, 157584, 3111312, 69533472, 1734229344, 47733263232, 1436801816448, 46942939272960, 1654215709835520, 62533593070755840, 2524077593084160000, 108339176213529384960, 4927173048408858531840, 236673892535088351744000
Offset: 0
-
A367475 := proc(n)
option remember ;
if n =0 then
1;
else
2*add((2*k/n + 1) * (k-1)! * binomial(n,k) * procname(n-k),k=1..n) ;
end if;
end proc:
seq(A367475(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n) = sum(k=0, n, 2^k*(k+2)!*abs(stirling(n, k, 1)))/2;
A317171
a(n) = n! * [x^n] 1/(1 + n*log(1 - x)).
Original entry on oeis.org
1, 1, 10, 222, 8824, 553870, 50545008, 6328330344, 1041597412224, 218138133235680, 56650689388344000, 17868469522986145536, 6728682216722958185472, 2981868816113406609186576, 1536217706761623823662025728, 910442461680276910819097616000, 615053979239579281793375485526016
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + n Log[1 - x]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] n^k k!, {k, n}], {n, 16}]]
A375945
Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^(3/2).
Original entry on oeis.org
1, 3, 18, 156, 1758, 24342, 399480, 7577700, 163090500, 3926104860, 104520733560, 3048811591680, 96695722690200, 3312942954681240, 121938065727180480, 4798400761979259120, 201030443703421854480, 8933622147642363338160, 419725992843354254228640
Offset: 0
-
nmax=18; CoefficientList[Series[1 / (1 + 2 * Log[1 - x])^(3/2),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k+1)*abs(stirling(n, k, 1)));
A354237
Expansion of e.g.f. 1 / (1 - log(1 + 2*x) / 2).
Original entry on oeis.org
1, 1, 0, 2, -8, 64, -592, 6768, -90624, 1395840, -24292608, 471453696, -10094066688, 236340378624, -6007053852672, 164713554069504, -4846361933021184, 152300800682754048, -5091189648734748672, 180386551596145508352, -6752521487083688165376
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(1 - Log[1 + 2 x]/2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! 2^(n - k), {k, 0, n}], {n, 0, 20}]
-
my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+2*x)/2))) \\ Michel Marcus, Jun 06 2022
A354286
Expansion of e.g.f. 1/(1 - x)^(2/(1 + 2 * log(1-x))).
Original entry on oeis.org
1, 2, 14, 144, 1936, 32000, 625952, 14117152, 360175584, 10246079616, 321313928448, 11006050602624, 408662128569984, 16344011453662464, 700254206319007488, 31990601456727585792, 1551985176120589820928, 79669906174753878177792
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(2/(1+2*log(1-x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
A368285
Expansion of e.g.f. exp(2*x) / (1 + 2*log(1 - x)).
Original entry on oeis.org
1, 4, 22, 168, 1700, 21560, 328576, 5844608, 118827264, 2717955776, 69076424384, 1931128212992, 58895387322240, 1945869352171264, 69235812945551872, 2639436090012161024, 107329778640349652992, 4637225944423696109568, 212138681191492565180416
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=2^i+2*sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
Showing 1-10 of 18 results.