A072597
Expansion of 1/(exp(-x) - x) as exponential generating function.
Original entry on oeis.org
1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
- O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
- Seiichi Manyama, Table of n, a(n) for n = 0..411
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013.
- G. Jiraskova and J. Shallit, The state complexity of star-complement-star, arXiv preprint arXiv:1203.5353 [cs.FL], 2012. - From _N. J. A. Sloane_, Sep 21 2012
-
CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */
A367845
Expansion of e.g.f. 1/(1 - x + log(1 - 2*x)).
Original entry on oeis.org
1, 3, 22, 250, 3816, 72968, 1675568, 44901456, 1375306368, 47392683648, 1814635323648, 76430014409472, 3511792144942080, 174806087920727040, 9370642040786049024, 538202280800536799232, 32972397141008692445184, 2146270648672407967137792
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367846
Expansion of e.g.f. 1/(1 - x + log(1 - 3*x)).
Original entry on oeis.org
1, 4, 41, 654, 14028, 377112, 12177126, 458916588, 19769059944, 958125646080, 51597765220608, 3056601306206016, 197532472461453072, 13829353660386169344, 1042679226974498229456, 84229294995413626072608, 7257792124889497549663488
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367847
Expansion of e.g.f. 1/(1 - x + log(1 - 4*x)).
Original entry on oeis.org
1, 5, 66, 1358, 37592, 1304536, 54384080, 2646247152, 147186205056, 9210766696320, 640472632680192, 48989958019395840, 4087959251421060096, 369547591764702870528, 35976590549993421907968, 3752609987262290143082496, 417518648351593243448279040
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 4^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367851
Expansion of e.g.f. 1/(1 - x + log(1 - 2*x)/2).
Original entry on oeis.org
1, 2, 10, 80, 872, 11984, 198416, 3840192, 85031040, 2119385856, 58714881792, 1789646610432, 59515302478848, 2144299161348096, 83204666280609792, 3459286210445942784, 153413140701637804032, 7228914528043587796992, 360670654712328998289408
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367852
Expansion of e.g.f. 1/(1 - x + log(1 - 3*x)/3).
Original entry on oeis.org
1, 2, 11, 102, 1320, 21804, 436986, 10283580, 277697304, 8458929792, 286825214592, 10712216384352, 436859348261904, 19313926491051360, 920053448561989296, 46977842202096405024, 2559387620091962391552, 148187802162935002975488
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367853
Expansion of e.g.f. 1/(1 - x + log(1 - 4*x)/4).
Original entry on oeis.org
1, 2, 12, 128, 1952, 38464, 926336, 26323968, 861419520, 31882358784, 1316275003392, 59954841649152, 2985997926727680, 161401148097036288, 9408988894966579200, 588381964243109412864, 39285329204482179858432, 2789234068575581984784384
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 4^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A343685
a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 3, 19, 182, 2328, 37234, 714674, 16004064, 409587144, 11792756640, 377261048592, 13275818803488, 509646721402032, 21195285059025648, 949279217570464944, 45552467588773815744, 2331624264279599225088, 126804353256754734370176, 7301857349340031590836352, 443826900013575494233057536
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(1 - 2 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A343686
a(0) = 1; a(n) = 3 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 4, 33, 410, 6796, 140824, 3501782, 101589732, 3368237928, 125634319104, 5206805098752, 237370661584704, 11805144854303760, 636030155604374400, 36903603627294958416, 2294156656214759133024, 152126925169297299197184, 10718105879980375520103936, 799564645068022035991527552
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(1 - 3 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A343687
a(0) = 1; a(n) = 4 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 5, 51, 782, 15992, 408814, 12541010, 448834728, 18358297416, 844755218400, 43190363326992, 2429044756967520, 149029669269441456, 9905401062535389072, 709016063545908259248, 54375505616232613595904, 4448148376192382963462400, 386619861956492109750650496, 35580548688887294090357622912
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(1 - 4 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-10 of 14 results.
Comments