A006153 E.g.f.: 1/(1-x*exp(x)).
1, 1, 4, 21, 148, 1305, 13806, 170401, 2403640, 38143377, 672552730, 13044463641, 276003553860, 6326524990825, 156171026562838, 4130464801497105, 116526877671782896, 3492868475952497313, 110856698175372359346, 3713836169709782989993, 130966414749485504586940
Offset: 0
Examples
a(3) = 21 since there are 21 ways to assign 3 people into labeled groups with designated leaders. If there is one group, there are 3 ways to select a leader from the 3 people in the group. If there are two groups (group 1 and group 2), there are 6 ways to assign leaders and then 2 ways to select a group for the remaining person, and thus there are 12 assignments. If there are three groups (group1, group 2, and group3), each person is a leader of their singleton group, and there are 6 ways to assign the 3 people to the 3 groups. Hence a(3) = 3 + 12 + 6 = 21. a(4) = 148 = 4 + 48 + 72 + 24.
References
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Getu and L. W. Shapiro, Combinatorial view of the composition of functions, Ars Combin. 10 (1980), 131-145. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 110
- Dennis Walsh, Assigning people into labeled groups with leaders
Programs
-
Maple
a := proc(n) local k; add(k^(n-k)*n!/(n-k)!,k=1..n); end; # for n >= 1
-
Mathematica
With[{nn=20},CoefficientList[Series[1/(1-x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 29 2012 *) a[ n_] := If[n < 0, 0, n! + n! Sum[(n - k)^k / k!, {k, n}]]; (* Michael Somos, Jan 21 2019 *)
-
PARI
x='x+O('x^66); egf=1/(1-x*exp(x)); /* = 1 + x + 2*x^2 + 7/2*x^3 + 37/6*x^4 + 87/8*x^5 +... */ Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
-
PARI
{a(n) = if(n<0, 0, n! * sum(k=0, n, (n-k)^k / k!))}; /* Michael Somos, Jan 21 2019 */
-
Sage
def A006153_list(len): f, R, C = 1, [1], [1]+[0]*(len-1) for n in (1..len-1): f *= n for k in range(n, 0, -1): C[k] = -C[k-1]*(1/(k-1) if k>1 else 1) C[0] = sum((-1)^k*C[k] for k in (1..n)) R.append(C[0]*f) return R print(A006153_list(20)) # Peter Luschny, Feb 21 2016
Formula
a(n) = n! * Sum_{k=0..n}(n-k)^k/k!.
a(n) = Sum_{k=0..n} k!*k^(n-k)*binomial(n,k).
For n>=1, a(n-1) = b(n) where b(1)=1 and b(n) = Sum_{i=1..n-1} i*binomial(n-1, i)*b(i). - Benoit Cloitre, Nov 13 2004
a(n) = Sum_{k=1..n}A199673(n,k) = Sum_{k=1..n}n! k^(n-k)/(n-k)!. - Dennis P. Walsh, Nov 15 2011
E.g.f. for a(n), n>=1: x*e^x/(1-x*e^x). - Dennis P. Walsh, Nov 15 2011
a(n) ~ n! / ((1+LambertW(1))*LambertW(1)^n). - Vaclav Kotesovec, Jun 21 2013
O.g.f.: Sum_{n>=0} n! * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
a(0) = 1; a(n) = n * Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 12 2020
Extensions
Definition corrected by Joerg Arndt, Apr 30 2011
Comments