cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A006153 E.g.f.: 1/(1-x*exp(x)).

Original entry on oeis.org

1, 1, 4, 21, 148, 1305, 13806, 170401, 2403640, 38143377, 672552730, 13044463641, 276003553860, 6326524990825, 156171026562838, 4130464801497105, 116526877671782896, 3492868475952497313, 110856698175372359346, 3713836169709782989993, 130966414749485504586940
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the row entries of triangle A199673, that is, a(n) is the number of ways to assign n people into labeled groups and then to assign a leader for each group from its members; see example below. - Dennis P. Walsh, Nov 15 2011
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that for some j>1, f^j=f where f^j denotes iterated functional composition. Equivalently, the number of endofunctions such that every element is mapped to a recurrent element. Equivalently, every vertex of the functional digraph is at a distance at most 1 from a cycle. - Geoffrey Critzer, Jan 21 2012
Numerators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." - Michael Somos, Jan 21 2019

Examples

			a(3) = 21 since there are 21 ways to assign 3 people into labeled groups with designated leaders. If there is one group, there are 3 ways to select a leader from the 3 people in the group. If there are two groups (group 1 and group 2), there are 6 ways to assign leaders and then 2 ways to select a group for the remaining person, and thus there are 12 assignments. If there are three groups (group1, group 2, and group3), each person is a leader of their singleton group, and there are 6 ways to assign the 3 people to the 3 groups. Hence a(3) = 3 + 12 + 6 = 21.
a(4) = 148 = 4 + 48 + 72 + 24.
		

References

  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).

Crossrefs

Row sums of triangle A199673.

Programs

  • Maple
    a := proc(n) local k; add(k^(n-k)*n!/(n-k)!,k=1..n); end; # for n >= 1
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 29 2012 *)
    a[ n_] := If[n < 0, 0, n! + n! Sum[(n - k)^k / k!, {k, n}]]; (* Michael Somos, Jan 21 2019 *)
  • PARI
    x='x+O('x^66);
    egf=1/(1-x*exp(x)); /* = 1 + x + 2*x^2 + 7/2*x^3 + 37/6*x^4 + 87/8*x^5 +... */
    Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
    
  • PARI
    {a(n) = if(n<0, 0, n! * sum(k=0, n, (n-k)^k / k!))}; /* Michael Somos, Jan 21 2019 */
    
  • Sage
    def A006153_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = -C[k-1]*(1/(k-1) if k>1 else 1)
            C[0] = sum((-1)^k*C[k] for k in (1..n))
            R.append(C[0]*f)
        return R
    print(A006153_list(20)) # Peter Luschny, Feb 21 2016

Formula

a(n) = n! * Sum_{k=0..n}(n-k)^k/k!.
a(n) = Sum_{k=0..n} k!*k^(n-k)*binomial(n,k).
For n>=1, a(n-1) = b(n) where b(1)=1 and b(n) = Sum_{i=1..n-1} i*binomial(n-1, i)*b(i). - Benoit Cloitre, Nov 13 2004
a(n) = Sum_{k=1..n}A199673(n,k) = Sum_{k=1..n}n! k^(n-k)/(n-k)!. - Dennis P. Walsh, Nov 15 2011
E.g.f. for a(n), n>=1: x*e^x/(1-x*e^x). - Dennis P. Walsh, Nov 15 2011
a(n) ~ n! / ((1+LambertW(1))*LambertW(1)^n). - Vaclav Kotesovec, Jun 21 2013
O.g.f.: Sum_{n>=0} n! * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
a(0) = 1; a(n) = n * Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 12 2020

Extensions

Definition corrected by Joerg Arndt, Apr 30 2011

A152818 Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
Offset: 0

Views

Author

Paul Curtz, Dec 13 2008

Keywords

Comments

A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009

Examples

			From _Omar E. Pol_, Jan 06 2009: (Start)
Array begins:
  1,    1,      2,        6,         24,          120, ...
  1,    4,     18,       96,        600,         4320, ...
  1,   12,    108,      960,       9000,        90720, ...
  1,   32,    540,     7680,     105000,      1451520, ...
  1,   80,   2430,    53760,    1050000,     19595520, ...
  1,  192,  10206,   344064,    9450000,    235146240, ...
  1,  448,  40824,  2064384,   78750000,   2586608640, ...
  1, 1024, 157464, 11796480,  618750000,  26605117440, ...
  1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
  1;
  1,   1;
  1,   4,     2;
  1,  12,    18,     6;
  1,  32,   108,    96,     24;
  1,  80,   540,   960,    600,   120;
  1, 192,  2430,  7680,   9000,  4320,   720;
  1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
		

Crossrefs

Programs

  • Magma
    A152818:= func< n,k | (k+1)^(n-k)*Factorial(k)*Binomial(n,k) >;
    [A152818(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
  • Mathematica
    len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n,0,m}, {k,0,m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
    T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
  • PARI
    A(n,k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
    
  • Sage
    def A152818_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return P.coefficients()
    for n in (0..12): print(A152818_row(n))  # Peter Luschny, May 03 2013
    

Formula

E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)

Extensions

Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009

A305990 Expansion of e.g.f.: (1+x) / (exp(-x) - x).

Original entry on oeis.org

1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
    a={1};For[n=1,n<20,n++,AppendTo[a,Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!),{k,0,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)

Formula

a(n) ~ n! / LambertW(1)^(n+1).
a(n) = (-1)^n * A009444(n+1).
a(n) = Sum_{k=0..n+1} (n+1)!*(n-k+1)^(k-1)/k! for n > 0. - Detlef Meya, Sep 05 2023

A368265 Expansion of e.g.f. exp(2*x) / (1 - x*exp(x)).

Original entry on oeis.org

1, 3, 12, 65, 460, 4057, 42922, 529769, 7472808, 118586033, 2090936014, 40554647377, 858082563532, 19668880007129, 485528656965762, 12841428220413593, 362276791422785488, 10859170086870710497, 344648459867067117334, 11546148650974694099201
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n-k+2)^k/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+2)^k / k!.
a(n) ~ n! / ((1 + LambertW(1)) * LambertW(1)^(n+2)). - Vaclav Kotesovec, Dec 29 2023

A379933 Expansion of e.g.f. 1/( exp(-x) - x )^2.

Original entry on oeis.org

1, 4, 22, 158, 1408, 15002, 186100, 2634998, 41937136, 741170834, 14402727484, 305225470046, 7005711916840, 173134991854970, 4583675648417044, 129424786945875398, 3882446011526729440, 123304773913531035170, 4133369745467043807340, 145840627118145774415214
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^2))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)*(k+2)^(n-k)/(n-k)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A072597.
a(n) = n! * Sum_{k=0..n} (k+1) * (k+2)^(n-k)/(n-k)!.

A092148 Expansion of e.g.f. 1/(exp(x)-x*exp(2*x)).

Original entry on oeis.org

1, 0, 3, 11, 85, 739, 7831, 96641, 1363209, 21632759, 381433771, 7398080029, 156533563693, 3588046200179, 88571349871551, 2342565398442569, 66087436823953681, 1980956920420309231, 62871632567144951635, 2106277265332074827573, 74276723394195659799861
Offset: 0

Views

Author

Ralf Stephan, Mar 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(Exp[x]-x Exp[2x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 19 2020 *)
  • PARI
    a(n)=n!*sum(k=0,n,(n-k-1)^k/k!)

Formula

a(n) = n! * Sum_{k=0..n} (n-k-1)^k/k!. [Corrected by Georg Fischer, Jun 22 2022]
a(n) ~ n! / ((LambertW(1) + 1) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jun 22 2022

Extensions

Corrected and extended by Harvey P. Dale, Sep 19 2020

A336948 E.g.f.: 1 / (exp(-3*x) - x).

Original entry on oeis.org

1, 4, 23, 195, 2229, 31863, 546255, 10925757, 249753897, 6422808411, 183524701779, 5768419379913, 197791542799965, 7347180526444359, 293912722687075767, 12597352573293062757, 575928946256877156177, 27976119070974574461363, 1438896686251112024068251
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(Exp[-3 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(3 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 18}]
    a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] - Sum[Binomial[n, k] (-3)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (exp(-3*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (3 * (n-k+1))^k / k!.
a(0) = 1; a(n) = 4 * n * a(n-1) - Sum_{k=2..n} binomial(n,k) * (-3)^k * a(n-k).
a(n) ~ n! / ((1 + LambertW(3)) * (LambertW(3)/3)^(n+1)). - Vaclav Kotesovec, Aug 09 2021

A379943 Expansion of e.g.f. 1/( exp(-x) - x )^4.

Original entry on oeis.org

1, 8, 76, 844, 10776, 155844, 2520856, 45125924, 886037216, 18938440324, 437820992136, 10886467502244, 289738784758096, 8218731027307844, 247539834718198136, 7889896358130120484, 265325716114102815936, 9388476560982511842564, 348703400008471862936296
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^4))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+4)^(n-k)*binomial(k+3, 3)/(n-k)!);

Formula

E.g.f.: B(x)^4, where B(x) is the e.g.f. of A072597.
a(n) = n! * Sum_{k=0..n} (k+4)^(n-k) * binomial(k+3,3)/(n-k)!.

A266329 E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(x) * exp( Integral A(x) dx ), where the constant of integration is zero.

Original entry on oeis.org

1, 1, 3, 12, 62, 395, 2994, 26331, 263729, 2964845, 36975858, 506687604, 7568226163, 122388728056, 2130425343621, 39718373337525, 789613850257051, 16674806980716514, 372771700023167862, 8794945626017009781, 218392778569695964100, 5693513850197410142081, 155482323312112362743373, 4438621019461797437443233, 132210153223378852014571364, 4101859859297789141335079684, 132343983668857026899533814277
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2016

Keywords

Comments

Compare to: G(x) = exp( Integral G(x) dx ) when G(x) = 1/(1-x).
What is Limit (a(n)/n!)^(1/n) ? Example: (a(300)/300!)^(1/300) = 1.2409703...
Limit (a(n)/n!)^(1/n) = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.24008610649849766623949... - Vaclav Kotesovec, Aug 21 2017

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 62*x^4/4! + 395*x^5/5! + 2994*x^6/6! + 26331*x^7/7! + 263729*x^8/8! + 2964845*x^9/9! + 36975858*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + 2*x + 5*x^2/2! + 17*x^3/3! + 79*x^4/4! + 474*x^5/5! + 3468*x^6/6! + 29799*x^7/7! + 293528*x^8/8! + 3258373*x^9/9! + 40234231*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 1,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + x) dx:
Integral 1/(exp(x) + x) dx  =  x - 2*x^2/2! + 7*x^3/3! - 37*x^4/4! + 261*x^5/5! - 2301*x^6/6! + 24343*x^7/7! - 300455*x^8/8! + 4238153*x^9/9! - 67255273*x^10/10! +...+ (-1)^(n-1)*A072597(n-1)*x^n/n! +...
so that A( Integral 1/(exp(x) + x) dx ) = exp(x).
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
  • PARI
    {a(n) = my(A=1+x,B=1+x); for(i=0,n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 1 + A ) ) ); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + x) ) )), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) + log(A(x)) dx ).
(2) A(x) = A'(x)/A(x) - log(A(x)).
(3) log(A(x)) = exp(x) * Integral exp(-x)*A(x) dx.
(4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) + x) dx ) ).
a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.2400861064984976662394901721056528110217273471501174317019052800276... - Vaclav Kotesovec, Aug 21 2017

A336947 E.g.f.: 1 / (exp(-2*x) - x).

Original entry on oeis.org

1, 3, 14, 98, 920, 10792, 151888, 2494032, 46803072, 988095104, 23178247424, 598074306304, 16835199087616, 513385352524800, 16859837094942720, 593234633904293888, 22265289445252628480, 887889931920920313856, 37489832605652634763264, 1670894259596134872711168
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(Exp[-2 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(2 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 19}]
    a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] - Sum[Binomial[n, k] (-2)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 19}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (exp(-2*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (2 * (n-k+1))^k / k!.
a(0) = 1; a(n) = 3 * n * a(n-1) - Sum_{k=2..n} binomial(n,k) * (-2)^k * a(n-k).
a(n) ~ n! / ((1 + LambertW(2)) * (LambertW(2)/2)^(n+1)). - Vaclav Kotesovec, Aug 09 2021
Showing 1-10 of 27 results. Next