cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 81 results. Next

A161633 E.g.f. satisfies A(x) = 1/(1 - x*exp(x*A(x))).

Original entry on oeis.org

1, 1, 4, 27, 268, 3525, 57966, 1146061, 26500552, 702069129, 20974309210, 697754762001, 25584428686620, 1025230366195789, 44579963354153878, 2090676600895922565, 105191995364927688976, 5652501986238910061073, 323083811850594613809714, 19573120681427758058921881
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 268*x^4/4! + 3525*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
		

Crossrefs

Cf. A006153, A161630 (e.g.f. = exp(x*A(x))), A213644, A364980, A364981.

Programs

  • Mathematica
    Flatten[{1,Table[n!*Sum[Binomial[n+1,k]/(n+1) * k^(n-k)/(n-k)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    a(n,m=1)=n!*sum(k=0,n,binomial(n+m,k)*m/(n+m)*k^(n-k)/(n-k)!)

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x)*exp(x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(x)) ).
(3) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-1)*x*A(x)) for all fixed nonnegative m.
a(n) = n! * Sum_{k=0..n} binomial(n+1,k)/(n+1) * k^(n-k)/(n-k)!.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then a(n,m) = n! * Sum_{k=0..n} binomial(n+m,k)*m/(n+m) * k^(n-k)/(n-k)!.
a(n) ~ n^(n-1) * c * ((c-1)*c)^(n+1/2) / (sqrt(2*c-1) * exp(n)), where c = 1 + 1/(2*LambertW(1/2)) = 2.4215299358831166... - Vaclav Kotesovec, Jan 10 2014

A213644 E.g.f. satisfies: A(x) = 1 + x*A(x)^2*exp(x*A(x)).

Original entry on oeis.org

1, 1, 6, 63, 988, 20725, 546246, 17364445, 646910328, 27652214313, 1334291800330, 71749167806041, 4255000637001588, 275904038948566093, 19420072633921942542, 1474700254793433800805, 120174737260376219862256, 10461031446553525766071249, 968785652772129485926955538
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...
such that A(x-x^2*exp(x)) = 1/(1-x*exp(x)) where:
1/(1-x*exp(x)) = 1 + x + 4*x^2/2! + 21*x^3/3! + 148*x^4/4! + 1305*x^5/5! +...+ A006153(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[1/(n+1)*Sum[k^(n-k)/(n-k)!*(n+k)!/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2013 *)
  • PARI
    {a(n)=1/(n+1)*sum(k=0, n, k^(n-k)/(n-k)! * (n+k)!/k! )}
    
  • PARI
    {a(n)=n!*polcoeff((1/x)*serreverse(x-x^2*exp(x+x*O(x^n))),n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. satisfies: A(x) = 1/(1 - x*A(x)*exp(x*A(x))).
E.g.f. satisfies: A(x-x^2*exp(x)) = 1/(1-x*exp(x)).
a(n) = 1/(n+1) * Sum_{k=0..n} k^(n-k)/(n-k)! * (n+k)!/k!.
a(n) = A213643(n+1)/(n+1).
Limit n->infinity (a(n)/n!)^(1/n) = r*(1+r)/(1-r) = 5.5854662015218413..., where r = 0.7603592340333989... is the root of the equation (1-r^2)/r^2 = exp((r-1)/r), same as for A213643. - Vaclav Kotesovec, Jul 15 2013
a(n) ~ (1+r)*sqrt(r/(1+2*r-r^2)) * n^(n-1) * (r*(1+r)/(1-r))^n / exp(n). - Vaclav Kotesovec, Dec 28 2013

A052848 Number of ordered set partitions with a designated element in each block and no block containing less than two elements.

Original entry on oeis.org

1, 0, 2, 3, 28, 125, 1146, 8827, 94200, 1007001, 12814390, 172114151, 2584755636, 41436880069, 721702509906, 13397081295795, 266105607506416, 5605474012933169, 125164378600050798, 2948082261121889983, 73122068527848758700, 1903894649651935410141
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of functional digraphs on {1,2,...,n} such that no node is at a distance greater than one from a cycle (A006153) and every recurrent element has at least one nonrecurrent element mapped to it. - Geoffrey Critzer, Dec 07 2012

Crossrefs

Cf. A000296.

Programs

  • Maple
    spec := [S,{B=Prod(Z,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-j)*binomial(n, j)*j, j=2..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nn=20; a=x Exp[x]; First[Range[0,nn]! CoefficientList[Series[1/(1-x (Exp[x]-1+y)), {x,0,nn}], {y,x}]] Range[0,nn]! (* Geoffrey Critzer, Dec 07 2012 *)
  • Maxima
    a(n):=n!*sum((k!*stirling2(n-k,k))/(n-k)!,k,0,n/2); /* Vladimir Kruchinin, Nov 16 2011 */

Formula

E.g.f.: -1/(-1+x*exp(x)-x).
a(n) = n!*Sum_{k=0..floor(n/2)} k!*Stirling2(n-k,k)/(n-k)!. - Vladimir Kruchinin, Nov 16 2011
a(n) ~ n!/(1+r+r^2) * r^(n+2), where r = 1.23997788765655... is the root of the equation log(1+r)=1/r. - Vaclav Kotesovec, Oct 05 2013
a(0) = 1; a(n) = n * Sum_{k=2..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 04 2023

Extensions

Better name from Geoffrey Critzer, Dec 10 2012

A072597 Expansion of 1/(exp(-x) - x) as exponential generating function.

Original entry on oeis.org

1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0

Views

Author

Michael Somos, Jun 23 2002

Keywords

Comments

Polynomials from A140749/A141412 are linked to Stirling1 (see A048594, A129841, A140749). See also P. Flajolet, X. Gourdon, B. Salvy in, available on Internet, RR-1857.pdf (preprint of unavailable Gazette des Mathematiciens 55, 1993, pp. 67-78; for graph 2 see also X. Gourdon RR-1852.pdf, pp. 64-65). What is the corresponding graph for A152650/A152656 = simplified A009998/A119502 linked, via A152818, to a(n), then Stirling2? - Paul Curtz, Dec 16 2008
Denominators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." Numerators in A006153. - Michael Somos, Jan 21 2019
Call an element g in a semigroup a group element if g^j = g for some j > 1. Then a(n) is the number of group elements in the semigroup of partial transformations of an n-set. Hence a(n) = Sum_{k=0..n} A154372(n,k)*k!. - Geoffrey Critzer, Nov 27 2021

Examples

			G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
		

References

  • O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
    a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */

Formula

E.g.f.: 1 / (exp(-x) - x).
a(n) = n!*Sum_{k=0..n} (n-k+1)^k/k!. - Vladeta Jovovic, Aug 31 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A052820(k). - Vladeta Jovovic, Apr 12 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} binomial(n, j)*a(j)*j. - Jon Perry, Apr 25 2005
E.g.f.: 1/(Q(0) - x) where Q(k) = 1 - x/(2*k+1 - x*(2*k+1)/(x - (2*k+2)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 04 2013
a(n) ~ n!/((1+c)*c^(n+1)), where c = A030178 = LambertW(1) = 0.5671432904... - Vaclav Kotesovec, Jun 26 2013
O.g.f.: Sum_{k>=0} k!*x^k/(1 - (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) = A006153(n+1)/(n+1). - Seiichi Manyama, Nov 05 2024

A089148 Expansion of e.g.f.: 1/(exp(x) - x).

Original entry on oeis.org

1, 0, -1, -1, 5, 19, -41, -519, -183, 19223, 73451, -847067, -8554547, 32488611, 977198559, 1325135969, -116987762287, -860498433233, 13730866757587, 243612350234973, -1120827248102379, -62079344419449925, -185852602587850681, 15185914155303053209
Offset: 0

Views

Author

Wouter Meeussen, Dec 06 2003

Keywords

Comments

INVERTi transform of [1, 1, 1/2, 1/6, 1/24, 1/120, ...] = [1, 0, -1/2, 1/6, 5/24, -19/120, -41/720, 519/5040, -183/40320, -19223/362880, ...]. - Gary W. Adamson, Oct 08 2008

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= -`if` (n<0, 1, add(b(n-i)/(i-1)!, i=1..n+1)) end:
    a:= n-> (-1)^n*n!*b(n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 29 2013
  • Mathematica
    a = CoefficientList[Series[1/( E^ x - x), {x, 0, 30}], x]; Table[(n - 1)! *a[[n]], {n, 1, Length[a]}] (* Roger L. Bagula and Gary W. Adamson, Oct 06 2008 *)
    With[{nn=30},CoefficientList[Series[1/(Exp[x]-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 03 2017 *)
  • Maxima
    a(n):=sum(sum(k!*binomial(n,l)*(-1)^(k-l)*stirling2(n-l,k-l), l,0,k), k,0,n); /* Vladimir Kruchinin, May 29 2013 */
    
  • Maxima
    a(n):=n!*sum((-n-1+k)^k/k!,k,0,n); /* Tani Akinari, Mar 26 2023 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(1/(exp(x)-x))) \\ Joerg Arndt, May 29 2013
    
  • Sage
    def A089148_list(len):
        f, R, C = 1, [], [1]+[0]*len
        for n in (1..len):
            for k in range(n, 0, -1):
                C[k] = C[k-1]*(1/(k-1) if k>1 else 1)
            C[0] = -sum((-1)^k*C[k] for k in (1..n))
            R.append(C[0]*f)
            f *= n
        return R
    print(A089148_list(24)) # Peter Luschny, Feb 21 2016

Formula

E.g.f.: -(1+1/(G(0)-1))/x where G(k) = 1 - (k+1)/(1 - x/(x + (k+1)^2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = Sum_{k=0..n} Sum_{m=0..k} k!*binomial(n,m)*(-1)^(k-m)*Stirling2(n-m,k-m). - Vladimir Kruchinin, May 29 2013
Lim sup n->oo |a(n)/n!|^(1/n) = 1/abs(LambertW(-1)) = 0.727507111152... - Vaclav Kotesovec, Aug 13 2013
a(0) = 1; a(n) = -Sum_{k=2..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
a(n) = n!*Sum_{k=0..n} (-n-1+k)^k/k!. - Tani Akinari, Mar 25 2023
a(n) = Sum_{k=0..n} A089087(n, k). - Peter Luschny, Mar 25 2023

A302397 Expansion of e.g.f. 1/(1 + x*exp(x)).

Original entry on oeis.org

1, -1, 0, 3, -4, -25, 114, 287, -4152, 1647, 192230, -807961, -10164804, 111209111, 454840554, -14657978385, 21202175504, 1988791958879, -15488971798194, -260886468394153, 4872247004699460, 23537372210149959, -1365745577227898350, 4274609859520565663, 364461939727273277016
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2018

Keywords

Examples

			1/(1 + x*exp(x)) = 1 - x/1! + 3*x^3/3! - 4*x^4/4! - 25*x^5/5! + 114*x^6/6! + 287*x^7/7! - 4152*x^8/8! + 1647*x^9/9! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1+x*exp(x)),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 + x Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(-1)^(n - k) (n - k)^k/k!, {k, 0, n}], {n, 24}]]
    Join[{1}, Table[Sum[(-1)^k k! k^(n - k) Binomial[n, k], {k, 0, n}], {n, 24}]]

Formula

E.g.f.: 1/(1 + x*exp(x)).
a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n-k)^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*k^(n-k)*binomial(n,k).

A216794 Number of set partitions of {1,2,...,n} with labeled blocks and a (possibly empty) subset of designated elements in each block.

Original entry on oeis.org

1, 2, 12, 104, 1200, 17312, 299712, 6053504, 139733760, 3628677632, 104701504512, 3323151509504, 115063060869120, 4316023589937152, 174347763227738112, 7545919601962287104, 348366745238330081280, 17087957176042900815872, 887497598764802460352512
Offset: 0

Views

Author

Geoffrey Critzer, Sep 16 2012

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2^(n-1)*(polylog(-n, 1/2)+`if`(n=0,1,0)):
    seq(round(evalf(a(n),32)), n=0..18); # Peter Luschny, Nov 03 2015
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n, j)*2^j, j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 04 2019
  • Mathematica
    nn=25;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[1/(1-a),{x,0,nn}],x]
    Round@Table[(-1)^(n+1) (PolyLog[-n, Sqrt[2]] + PolyLog[-n, -Sqrt[2]])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • PARI
    a(n) = 2^(n-1)*(polylog(-n, 1/2) + 0^n); \\ Michel Marcus, May 30 2018
  • Sage
    def A216794(n):
        return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1))
    [A216794(n) for n in range(18)] # Peter Luschny, Jul 22 2014
    

Formula

E.g.f.: 1/(2 - exp(2*x)).
E.g.f.: 1 + 2*x/(G(0) - 2*x) where G(k) = 2*k+1 - x*2*(2*k+1)/(2*x + (2*k+2)/(1 + 2*x/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
E.g.f.: 1 + 2*x/( G(0) - 2*x ) where G(k) = 1 - 2*x/(1 + (1*k+1)/G(k+1)); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 02 2013
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+2)/( 1 - 4*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * (2/log(2))^n/log(4). - Vaclav Kotesovec, Sep 24 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 8*x^2*(k+1)^2/( 8*x^2*(k+1)^2 - (1-2*x-6*x*k)*(1-8*x-6*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2013
From Vladimir Reshetnikov, Oct 31 2015: (Start)
a(n) = (-1)^(n+1)*(Li_{-n}(sqrt(2)) + Li_{-n}(-sqrt(2)))/4, where Li_n(x) is the polylogarithm.
Li_{-n}(sqrt(2)) = (-1)^(n+1)*(2*a(n) + A080253(n)*sqrt(2)).
(End)
a(n) = 2^(n-1)*(Li_{-n}(1/2) + 0^n) with 0^0=1. - Peter Luschny, Nov 03 2015
From Peter Bala, Oct 18 2023: (Start)
a(n) = 2^n * A000670(n)
Inverse binomial transform of A080253.
The sequence is the first column of the array (2*I - P^2)^(-1), where P denotes Pascal's triangle A007318. (End)

A354436 a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.

Original entry on oeis.org

1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0

Views

Author

Seiichi Manyama, May 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
    
  • Python
    from math import factorial
    def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)).
a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022
a(n) = Sum_{k=0..n} (n-k)^k*k!*binomial(n,k). - Ridouane Oudra, Jun 17 2025

A193421 E.g.f.: Sum_{n>=0} x^n * exp(n^2*x).

Original entry on oeis.org

1, 1, 4, 33, 436, 8185, 206046, 6622945, 263313688, 12627149265, 716160702970, 47284266221401, 3587061106583604, 309251317536586633, 30017652739792964806, 3254137305364883664945, 391238883136463492841136, 51846176797206158144925985
Offset: 0

Views

Author

Paul D. Hanna, Jul 27 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 436*x^4/4! + 8185*x^5/5! + 206046*x^6/6! +...
where
A(x) = 1 + x*exp(x) + x^2*exp(4*x) + x^3*exp(9*x) + x^4*exp(16*x) +...
By a q-series identity:
A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[n! * Sum[(n-k)^(2*k)/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 21 2014 *)
  • PARI
    {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m^2*x+x*O(x^n))); n!*polcoeff(Egf, n)}
    
  • PARI
    /* q-series identity: */
    {a(n)=local(A=1+x);for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((4*k-3)*x+x*O(x^n)))/(1-x*exp((4*k-1)*x+x*O(x^n)))))); n!*polcoeff(A, n)}
    
  • PARI
    {a(n) = n!*sum(k=0,n, (n-k)^(2*k)/k!)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((4*k-3)*x)) / (1 - x*exp((4*k-1)*x)), due to a q-series identity.
Let q = exp(x), then the e.g.f. equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...))))))))), due to a partial elliptic theta function identity.
a(n) = n! * Sum_{k=0..n} (n-k)^(2*k)/k!. - Paul D. Hanna, Jan 19 2013
O.g.f.: Sum_{k>=0} k! * x^k / (1 - k^2*x)^(k+1). - Ilya Gutkovskiy, Jul 02 2019
log(a(n)) ~ n*(2*(log(n) - 1) + LambertW(sqrt(n))*(3*log(n) - 2*log(1 + LambertW(sqrt(n))) + 2*LambertW(sqrt(n)))) / (2*(1 + LambertW(sqrt(n)))). - Vaclav Kotesovec, Nov 26 2022

A009444 E.g.f. log(1 + x*exp(-x)).

Original entry on oeis.org

0, 1, -3, 11, -58, 409, -3606, 38149, -470856, 6641793, -105398650, 1858413061, -36044759796, 762659322385, -17481598316742, 431535346662645, -11413394655983536, 321989729198400385, -9651573930139850610
Offset: 0

Views

Author

Keywords

Comments

abs(a(n)) is the number of connected functions f:{1,2,...,n}->{1,2,...,n} such that every element is mapped into a recurrent element. Cf. A006153. - Geoffrey Critzer, May 24 2012

Crossrefs

Programs

  • Mathematica
    With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 22 2017 *)
  • Maxima
    a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!,m,1,n); /* Vladimir Kruchinin, Oct 08 2011 */
    
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
    
  • Sage
    A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n))
    [A009444(n) for n in (0..9)] # Peter Luschny, Jan 18 2016

Formula

abs(a(n)) is asymptotic to (n-1)!/LambertW(1)^n. - Vladeta Jovovic, Jul 12 2007
Sequence of absolute values has e.g.f. log(1/(1-x*exp(x))). - Joerg Arndt, Apr 30 2011
a(n) = (-1)^(n+1)*n!*sum(m=1..n, m^(n-m-1)/(n-m)!). - Vladimir Kruchinin, Oct 08 2011
a(n) = (-1)^(n + 1) * n + Sum_{k=1..n-1} (-1)^(n - k) * binomial(n-1,k-1) * (n - k) * a(k). - Ilya Gutkovskiy, Jan 17 2020

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, Apr 30 2011
Showing 1-10 of 81 results. Next