A161633
E.g.f. satisfies A(x) = 1/(1 - x*exp(x*A(x))).
Original entry on oeis.org
1, 1, 4, 27, 268, 3525, 57966, 1146061, 26500552, 702069129, 20974309210, 697754762001, 25584428686620, 1025230366195789, 44579963354153878, 2090676600895922565, 105191995364927688976, 5652501986238910061073, 323083811850594613809714, 19573120681427758058921881
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 268*x^4/4! + 3525*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
-
Flatten[{1,Table[n!*Sum[Binomial[n+1,k]/(n+1) * k^(n-k)/(n-k)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
-
a(n,m=1)=n!*sum(k=0,n,binomial(n+m,k)*m/(n+m)*k^(n-k)/(n-k)!)
A213644
E.g.f. satisfies: A(x) = 1 + x*A(x)^2*exp(x*A(x)).
Original entry on oeis.org
1, 1, 6, 63, 988, 20725, 546246, 17364445, 646910328, 27652214313, 1334291800330, 71749167806041, 4255000637001588, 275904038948566093, 19420072633921942542, 1474700254793433800805, 120174737260376219862256, 10461031446553525766071249, 968785652772129485926955538
Offset: 0
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...
such that A(x-x^2*exp(x)) = 1/(1-x*exp(x)) where:
1/(1-x*exp(x)) = 1 + x + 4*x^2/2! + 21*x^3/3! + 148*x^4/4! + 1305*x^5/5! +...+ A006153(n)*x^n/n! +...
-
Flatten[{1,Table[1/(n+1)*Sum[k^(n-k)/(n-k)!*(n+k)!/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2013 *)
-
{a(n)=1/(n+1)*sum(k=0, n, k^(n-k)/(n-k)! * (n+k)!/k! )}
-
{a(n)=n!*polcoeff((1/x)*serreverse(x-x^2*exp(x+x*O(x^n))),n)}
for(n=0,25,print1(a(n),", "))
A052848
Number of ordered set partitions with a designated element in each block and no block containing less than two elements.
Original entry on oeis.org
1, 0, 2, 3, 28, 125, 1146, 8827, 94200, 1007001, 12814390, 172114151, 2584755636, 41436880069, 721702509906, 13397081295795, 266105607506416, 5605474012933169, 125164378600050798, 2948082261121889983, 73122068527848758700, 1903894649651935410141
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(Z,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(n, j)*j, j=2..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
nn=20; a=x Exp[x]; First[Range[0,nn]! CoefficientList[Series[1/(1-x (Exp[x]-1+y)), {x,0,nn}], {y,x}]] Range[0,nn]! (* Geoffrey Critzer, Dec 07 2012 *)
-
a(n):=n!*sum((k!*stirling2(n-k,k))/(n-k)!,k,0,n/2); /* Vladimir Kruchinin, Nov 16 2011 */
A072597
Expansion of 1/(exp(-x) - x) as exponential generating function.
Original entry on oeis.org
1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
- O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
- Seiichi Manyama, Table of n, a(n) for n = 0..411
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013.
- G. Jiraskova and J. Shallit, The state complexity of star-complement-star, arXiv preprint arXiv:1203.5353 [cs.FL], 2012. - From _N. J. A. Sloane_, Sep 21 2012
-
CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */
A089148
Expansion of e.g.f.: 1/(exp(x) - x).
Original entry on oeis.org
1, 0, -1, -1, 5, 19, -41, -519, -183, 19223, 73451, -847067, -8554547, 32488611, 977198559, 1325135969, -116987762287, -860498433233, 13730866757587, 243612350234973, -1120827248102379, -62079344419449925, -185852602587850681, 15185914155303053209
Offset: 0
-
b:= proc(n) b(n):= -`if` (n<0, 1, add(b(n-i)/(i-1)!, i=1..n+1)) end:
a:= n-> (-1)^n*n!*b(n):
seq(a(n), n=0..30); # Alois P. Heinz, May 29 2013
-
a = CoefficientList[Series[1/( E^ x - x), {x, 0, 30}], x]; Table[(n - 1)! *a[[n]], {n, 1, Length[a]}] (* Roger L. Bagula and Gary W. Adamson, Oct 06 2008 *)
With[{nn=30},CoefficientList[Series[1/(Exp[x]-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 03 2017 *)
-
a(n):=sum(sum(k!*binomial(n,l)*(-1)^(k-l)*stirling2(n-l,k-l), l,0,k), k,0,n); /* Vladimir Kruchinin, May 29 2013 */
-
a(n):=n!*sum((-n-1+k)^k/k!,k,0,n); /* Tani Akinari, Mar 26 2023 */
-
x='x+O('x^66); Vec(serlaplace(1/(exp(x)-x))) \\ Joerg Arndt, May 29 2013
-
def A089148_list(len):
f, R, C = 1, [], [1]+[0]*len
for n in (1..len):
for k in range(n, 0, -1):
C[k] = C[k-1]*(1/(k-1) if k>1 else 1)
C[0] = -sum((-1)^k*C[k] for k in (1..n))
R.append(C[0]*f)
f *= n
return R
print(A089148_list(24)) # Peter Luschny, Feb 21 2016
A302397
Expansion of e.g.f. 1/(1 + x*exp(x)).
Original entry on oeis.org
1, -1, 0, 3, -4, -25, 114, 287, -4152, 1647, 192230, -807961, -10164804, 111209111, 454840554, -14657978385, 21202175504, 1988791958879, -15488971798194, -260886468394153, 4872247004699460, 23537372210149959, -1365745577227898350, 4274609859520565663, 364461939727273277016
Offset: 0
1/(1 + x*exp(x)) = 1 - x/1! + 3*x^3/3! - 4*x^4/4! - 25*x^5/5! + 114*x^6/6! + 287*x^7/7! - 4152*x^8/8! + 1647*x^9/9! + ...
-
a:=series(1/(1+x*exp(x)),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 26 2019
-
nmax = 24; CoefficientList[Series[1/(1 + x Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(-1)^(n - k) (n - k)^k/k!, {k, 0, n}], {n, 24}]]
Join[{1}, Table[Sum[(-1)^k k! k^(n - k) Binomial[n, k], {k, 0, n}], {n, 24}]]
A216794
Number of set partitions of {1,2,...,n} with labeled blocks and a (possibly empty) subset of designated elements in each block.
Original entry on oeis.org
1, 2, 12, 104, 1200, 17312, 299712, 6053504, 139733760, 3628677632, 104701504512, 3323151509504, 115063060869120, 4316023589937152, 174347763227738112, 7545919601962287104, 348366745238330081280, 17087957176042900815872, 887497598764802460352512
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- José A. Adell, Beáta Bényi, Venkat Murali, and Sithembele Nkonkobe, Generalized Barred Preferential Arrangements, Transactions on Combinatorics (2022).
- Sithembele Nkonkobe, Venkat Murali, and Béata Bényi, Generalised Barred Preferential Arrangements, arXiv:1907.08944 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Polylogarithm.
-
a := n -> 2^(n-1)*(polylog(-n, 1/2)+`if`(n=0,1,0)):
seq(round(evalf(a(n),32)), n=0..18); # Peter Luschny, Nov 03 2015
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*2^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 04 2019
-
nn=25;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[1/(1-a),{x,0,nn}],x]
Round@Table[(-1)^(n+1) (PolyLog[-n, Sqrt[2]] + PolyLog[-n, -Sqrt[2]])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
a(n) = 2^(n-1)*(polylog(-n, 1/2) + 0^n); \\ Michel Marcus, May 30 2018
-
def A216794(n):
return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1))
[A216794(n) for n in range(18)] # Peter Luschny, Jul 22 2014
A354436
a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.
Original entry on oeis.org
1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
-
from math import factorial
def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022
A193421
E.g.f.: Sum_{n>=0} x^n * exp(n^2*x).
Original entry on oeis.org
1, 1, 4, 33, 436, 8185, 206046, 6622945, 263313688, 12627149265, 716160702970, 47284266221401, 3587061106583604, 309251317536586633, 30017652739792964806, 3254137305364883664945, 391238883136463492841136, 51846176797206158144925985
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 436*x^4/4! + 8185*x^5/5! + 206046*x^6/6! +...
where
A(x) = 1 + x*exp(x) + x^2*exp(4*x) + x^3*exp(9*x) + x^4*exp(16*x) +...
By a q-series identity:
A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +...
-
Flatten[{1,Table[n! * Sum[(n-k)^(2*k)/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 21 2014 *)
-
{a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m^2*x+x*O(x^n))); n!*polcoeff(Egf, n)}
-
/* q-series identity: */
{a(n)=local(A=1+x);for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((4*k-3)*x+x*O(x^n)))/(1-x*exp((4*k-1)*x+x*O(x^n)))))); n!*polcoeff(A, n)}
-
{a(n) = n!*sum(k=0,n, (n-k)^(2*k)/k!)}
for(n=0,20,print1(a(n),", "))
A009444
E.g.f. log(1 + x*exp(-x)).
Original entry on oeis.org
0, 1, -3, 11, -58, 409, -3606, 38149, -470856, 6641793, -105398650, 1858413061, -36044759796, 762659322385, -17481598316742, 431535346662645, -11413394655983536, 321989729198400385, -9651573930139850610
Offset: 0
-
With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 22 2017 *)
-
a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!,m,1,n); /* Vladimir Kruchinin, Oct 08 2011 */
-
x='x+O('x^66); /* that many terms */
egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */
Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
-
A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n))
[A009444(n) for n in (0..9)] # Peter Luschny, Jan 18 2016
Showing 1-10 of 81 results.
Comments