A256016
a(n) = n! * Sum_{k=0..n} k^n/k!.
Original entry on oeis.org
1, 1, 6, 57, 796, 15145, 374526, 11669665, 447595800, 20733553809, 1141067915290, 73552752257281, 5484203261135028, 467864288815609465, 45236104846954021014, 4915818294874879570305, 596044703812665607374256, 80118478395137652912476449, 11870487496575403846760198322
Offset: 0
-
Join[{1}, Table[n!*Sum[k^n/k!,{k,0,n}],{n,1,20}]]
-
a(n) = n!*sum(k=0, n, k^n/k!); \\ Michel Marcus, Aug 15 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-k*x))))) \\ Seiichi Manyama, Aug 23 2022
A356628
a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(n - 2*k)!.
Original entry on oeis.org
1, 1, 1, 7, 25, 181, 1561, 12811, 188497, 2071945, 38889361, 620762671, 12917838121, 291278938237, 6667342764265, 194869722610291, 5137978752994081, 177509783765281681, 5610285632192738977, 215195998789004395735, 8228064506323330305721
Offset: 0
-
a[n_] := n! * Sum[(n - 2*k)^k/(n - 2*k)!, {k, 0, Floor[n/2]}]; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(n-2*k)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^2)))))
A356629
a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(n - 3*k)!.
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 5881, 82321, 547345, 6053041, 167991121, 2179469161, 22892967241, 788375451865, 18046198202761, 245523704069281, 7548055281543841, 270833271588545761, 5369819950838359585, 141456920470310708281, 6760255576117937586841
Offset: 0
-
a[n_] := n! * Sum[(n - 3*k)^k/(n - 3*k)!, {k, 0, Floor[n/3]}]; a[0] = 1; Array[a, 22, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(n-3*k)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^3)))))
A356673
a(n) = n! * Sum_{k=0..n} k^(3*(n-k))/k!.
Original entry on oeis.org
1, 1, 3, 31, 901, 45741, 3960871, 584698843, 130554106761, 40790044059481, 17681098707667531, 10491554658622447191, 8198225417359164798733, 8172446419302496167191941, 10264848632098736708582150511
Offset: 0
-
a(n) = n!*sum(k=0, n, k^(3*(n-k))/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k^3*x)))))
A345747
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.
Original entry on oeis.org
1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
-
a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))
A355575
a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/k!.
Original entry on oeis.org
1, 0, 0, 6, 24, 120, 1080, 10080, 120960, 1874880, 34473600, 738460800, 17982518400, 489858969600, 14834839219200, 498452777222400, 18583796335104000, 768773914900992000, 35220800475250790400, 1779227869201400217600, 98469904378626772992000
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n - 3*k)/k!, {k, 0, n/3}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
-
a(n) = n!*sum(k=0, n\3, k^(n-3*k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(3*k)/(k!*(1-k*x)))))
A356608
a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(24^k * (n - 4*k)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 31, 106, 281, 1261, 13861, 106261, 558361, 2709136, 32802771, 447762316, 4093711441, 28011714641, 293624974441, 5549250905281, 80454378591121, 815886496908946, 8379058314620071, 168672787637953446, 3514729162490432041, 51656083670790267901
Offset: 0
-
a[n_] := n! * Sum[(n - 4*k)^k/(24^k*(n - 4*k)!), {k, 0, Floor[n/4]}]; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\4, (n-4*k)^k/(24^k*(n-4*k)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^4/24)))))
A356029
a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(2^k * (n - 2*k)!).
Original entry on oeis.org
1, 1, 1, 4, 13, 61, 421, 2626, 27049, 245953, 3069721, 40222216, 576988501, 10058716669, 169773404893, 3596206855606, 73450508303761, 1775382487932001, 43993288886533489, 1183551336464017708, 34806599282992709341, 1043452963148195577181
Offset: 0
-
a[n_] := n! * Sum[(n - 2*k)^k/(2^k*(n - 2*k)!), {k, 0, Floor[n/2]}]; a[0] = 1; Array[a, 22, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(2^k*(n-2*k)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^2/2)))))
A356328
a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * (n - 3*k)!).
Original entry on oeis.org
1, 1, 1, 1, 5, 21, 61, 281, 2521, 15625, 84841, 971521, 10646461, 83366141, 962405445, 15445935961, 181502928881, 2182235585041, 42297481449361, 714940186390465, 10007476059187381, 204722588272279141, 4600003555996715021, 80767827313930590681
Offset: 0
-
a[n_] := n! * Sum[(n - 3*k)^k/(6^k*(n - 3*k)!), {k, 0, Floor[n/3]}]; a[0] = 1; Array[a, 24, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(6^k*(n-3*k)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^3/6)))))
A356630
a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(n - 4*k)!.
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 378001, 7287841, 59930641, 319429441, 7524471241, 353072319601, 5897248517161, 55827317669761, 726274560953761, 53139878190826561, 1650487849152976801, 25981849479032542081, 317292238756098973081
Offset: 0
-
a[n_] := n! * Sum[(n - 4*k)^k/(n - 4*k)!, {k, 0, Floor[n/4]}]; a[0] = 1; Array[a, 22, 0] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = n!*sum(k=0, n\4, (n-4*k)^k/(n-4*k)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^4)))))
Showing 1-10 of 15 results.