cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358080 Expansion of e.g.f. 1/(1 - x^2 * exp(x)).

Original entry on oeis.org

1, 0, 2, 6, 36, 260, 2190, 21882, 248696, 3181320, 45229050, 707208590, 12063902532, 222939837276, 4436813677478, 94605994108290, 2151763873634160, 51999544476324752, 1330540380342907506, 35936656483848501654, 1021700660649312689660
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/(n - 2*k)!.
a(n) ~ n! / ((1 + LambertW(1/2)) * 2^(n+1) * LambertW(1/2)^n). - Vaclav Kotesovec, Oct 30 2022

A355575 a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/k!.

Original entry on oeis.org

1, 0, 0, 6, 24, 120, 1080, 10080, 120960, 1874880, 34473600, 738460800, 17982518400, 489858969600, 14834839219200, 498452777222400, 18583796335104000, 768773914900992000, 35220800475250790400, 1779227869201400217600, 98469904378626772992000
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n - 3*k)/k!, {k, 0, n/3}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(3*k)/(k!*(1-k*x)))))

Formula

E.g.f.: Sum_{k>=0} x^(3*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(Pi) * exp((n - 1/2)/LambertW(exp(3/4)*(2*n - 1)/8) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(3/4)*(2*n - 1)/8)) * 2^(2*n + 1/2) * LambertW(exp(3/4)*(2*n - 1)/8)^n). - Vaclav Kotesovec, Oct 30 2022

A347433 Irregular triangle read by rows: T(n,k) is the difference between the total arch lengths of a semi-meander multiplied by its number of exterior arches and total arch lengths of the semi-meanders with n + 1 top arches generated by the exterior arch splitting algorithm on the given semi-meander.

Original entry on oeis.org

4, 4, 4, 10, 4, 11, 4, 12, 20, 4, 13, 22, 4, 14, 24, 34, 4, 15, 26, 37, 4, 16, 28, 40, 52, 4, 17, 30, 43, 56, 4, 18, 32, 46, 60, 74, 4, 19, 34, 49, 64, 79, 4, 20, 36, 52, 68, 84, 100, 4, 21, 38, 55, 72, 89, 106, 4, 22, 40, 58, 76, 94, 112, 130, 4, 23, 42, 61, 80, 99
Offset: 2

Views

Author

Roger Ford, Sep 01 2021

Keywords

Examples

			n = number of top arches, k = number of exterior top arches:
n\k  2   3   4   5   6
2:   4
3:   4
4:   4   10
5:   4   11
6:   4   12  20
7:   4   13  22
8:   4   14  24  34
9:   4   15  26  37
10:  4   16  28  40  52
Length of each arch = 1 + number of arches covered:
Top arches of a given semi-meander:       Arch splitting generated
n = 5, k = 2                              semi-meanders (6 top arches):
     1     1    = 2 exterior arches                /\
           /\                                     //\\
     /\   //\\                                   ///\\\
    //\\ ///\\\                           /\ /\ ////\\\\
    21   321    = 9 length of top arches  1  1  4321     = 12 length of top arches
                                            /\
                                           //\\   /\
                                          ///\\\ //\\ /\
                                          321    21   1  = 10 length of top arches
    T(5,2) = 4 + (5+2)(2-2) = 4 --------------------------- 4 = (12+10) - (2 * 9);
Top arches of given semi meander:
n = 5, k = 3                                    /\
    1   1    1   = 3 exterior arches           /  \
        /\   /\                               /    \
    /\ //\\ //\\                             //\  /\\
    1  21   21   = 7 length top arches   /\ ///\\//\\\
                                         1  521  21     = 12 length of top arches
                                                   /\
                                          /\      //\\
                                         //\\ /\ ///\\\
                                         21   1  321    = 10 length of top arches
                                            /\
                                           /  \
                                          /  /\\
                                         //\//\\\ /\ /\
                                         41 21    1  1  = 10 length of top arches
    T(5,3) = 4 + (5+2)(3-2) = 11 --------------------- 11 = (12+10+10) - (3 * 7).
		

Crossrefs

Cf. A345747.

Formula

For n >= 2 and k = 2..floor((n+2)/2), T(n,k) = 4 + (n+2)*(k-2).
Showing 1-3 of 3 results.