cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358081 Expansion of e.g.f. 1/(1 - x^3 * exp(x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 840, 10290, 80976, 847224, 13306320, 190271070, 2677088040, 46082426676, 874515884424, 16582066303530, 336875275380000, 7539189088358640, 176554878235711776, 4295134487197296054, 111114287924643309240, 3036073975138066955820
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1-x^3 Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/(n - 3*k)!.
a(n) ~ n! / ((1 + LambertW(1/3)) * 3^(n+1) * LambertW(1/3)^n). - Vaclav Kotesovec, Oct 30 2022

A345747 a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))

Formula

E.g.f.: Sum_{k>=0} x^(2*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(2*Pi) * exp((n - 1/2)/LambertW(exp(2/3)*(2*n - 1)/6) - 2*n) * n^(2*n + 1/2) / (3^(n + 1/2) * sqrt(1 + LambertW(exp(2/3)*(2*n - 1)/6)) * LambertW(exp(2/3)*(2*n - 1)/6)^n). - Vaclav Kotesovec, Oct 30 2022

A352945 a(n) = Sum_{k=0..floor(n/3)} k^(n-3*k).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 5, 10, 20, 42, 93, 214, 516, 1307, 3473, 9659, 28002, 84257, 262229, 842196, 2787864, 9506796, 33388393, 120727844, 449148808, 1717595949, 6743420017, 27147152525, 111931584098, 472225684599, 2037019695797, 8979468552886, 40432306870108
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, k^(n-3*k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/(1-k*x)))

Formula

G.f.: Sum_{k>=0} x^(3*k) / (1 - k * x).
a(n) ~ sqrt(2*Pi/3) * (n/(3*LambertW(exp(1)*n/3)))^(n + 1/2 - n/LambertW(exp(1)*n/3)) / sqrt(1 + LambertW(exp(1)*n/3)). - Vaclav Kotesovec, Apr 14 2022
Showing 1-3 of 3 results.