cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A031971 a(n) = Sum_{k=1..n} k^n.

Original entry on oeis.org

1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1

Views

Author

Chris du Feu (chris(AT)beckingham0.demon.co.uk)

Keywords

Comments

From Alexander Adamchuk, Jul 21 2006: (Start)
p^(3k - 1) divides a(p^k) for prime p > 2 and k = 1, 2, 3, 4, ... or p^2 divides a(p) for prime p > 2. p^5 divides a(p^2) for prime p > 2. p^8 divides a(p^3) for prime p > 2. p^11 divides a(p^4) for prime p > 2.
p^2 divides a(2p) for prime p > 3. p^3 divides a(3p) for prime p > 2. p^2 divides a(4p) for prime p > 5. p^3 divides a(5p) for prime p > 3. p^2 divides a(6p) for prime p > 7.
p divides a(2p - 1) for all prime p. p^3 divides a(2p^2 - 1) for all prime p. p^5 divides a(2p^3 - 1) for all prime p.
p divides a((p - 1)/2) for p = 5, 13, 17, 29, 37, 41, 53, 61, ... = A002144 Pythagorean primes: primes of form 4n + 1.
(End)
If p prime then a(p-1) == -1 (mod p) [see De Koninck & Mercier reference]. Example: for p = 7, a(6) = 67171 = 7 * 9596 - 1. - Bernard Schott, Mar 06 2020

References

  • J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

A diagonal of array A103438.
For a(n) mod n see A182398.

Programs

Formula

a(n) is asymptotic to (e/(e - 1))*n^n. - Benoit Cloitre, Dec 17 2003
a(n) = zeta(-n) - zeta(-n, n + 1), where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function, a generalization of the Riemann zeta function. - Alexander Adamchuk, Jul 21 2006
a(n) == 1 (mod n) <==> n is in A014117 = 1, 2, 6, 42, 1806 (see the link "On the congruence ..."). - Jonathan Sondow, Oct 18 2013
a(A054377(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
a(n) = n! * [x^n] exp(x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018
a(n) ~ ((e*n+1)/((e-1)*(n+1))) * n^n. - N. J. A. Sloane, Oct 13 2018, based on email from Claude F. Leibovici who claims this is slightly better than Cloitre's version when n is small.

A072034 a(n) = Sum_{k=0..n} binomial(n,k)*k^n.

Original entry on oeis.org

1, 1, 6, 54, 680, 11000, 217392, 5076400, 136761984, 4175432064, 142469423360, 5372711277824, 221903307604992, 9961821300640768, 482982946946734080, 25150966159083264000, 1400031335107317628928, 82960293298087664648192
Offset: 0

Views

Author

Karol A. Penson, Jun 07 2002

Keywords

Comments

The number of functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets. - Geoffrey Critzer, Sep 16 2012

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*k^n,k=0..n),n=0..17); # Peter Luschny, Jun 09 2015
  • Mathematica
    Table[Sum[Binomial[n,k]k^n,{k,0,n}],{n,1,20}] (* Geoffrey Critzer, Sep 16 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 10 2017
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*k^n); \\ Michel Marcus, Nov 10 2017

Formula

E.g.f.: 1/(1+LambertW(-x*exp(x))). - Vladeta Jovovic, Mar 29 2008
a(n) ~ (n/(e*LambertW(1/e)))^n/sqrt(1+LambertW(1/e)). - Vaclav Kotesovec, Nov 26 2012
O.g.f.: Sum_{n>=0} n^n * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018

Extensions

Offset set to 0 and a(0) = 1 prepended by Peter Luschny, Jun 09 2015
E.g.f. edited to include a(0)=1 by Robert Israel, Jun 09 2015

A337001 a(n) = n! * Sum_{k=0..n} k^3 / k!.

Original entry on oeis.org

0, 1, 10, 57, 292, 1585, 9726, 68425, 547912, 4931937, 49320370, 542525401, 6510306540, 84633987217, 1184875823782, 17773137360105, 284370197765776, 4834293362023105, 87017280516421722, 1653328329812019577, 33066566596240399540, 694397898521048399601
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Comments

Exponential convolution of cubes (A000578) and factorial numbers (A000142).

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[k^3/k!, {k, 0, n}], {n, 0, 21}]
    nmax = 21; CoefficientList[Series[x (1 + 3 x + x^2) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = n (n^2 + a[n - 1]); Table[a[n], {n, 0, 21}]
  • PARI
    a(n) = n! * sum(k=0, n, k^3/k!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: x * (1 + 3*x + x^2) * exp(x) / (1 - x).
a(0) = 0; a(n) = n * (n^2 + a(n-1)).
a(n) ~ 5*exp(1)*n!. - Vaclav Kotesovec, Jan 13 2024

A242446 a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).

Original entry on oeis.org

1, 18, 924, 93320, 15609240, 3903974592, 1364509038592, 635177480713344, 379867490829555840, 283825251434680651520, 259092157573229145859584, 283735986144895532781391872, 367138254141051794797009309696, 554136240038549806366753446051840
Offset: 1

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=1..n} C(n,k) * k^(p*n) is asymptotic to sqrt(r/(p+r-p*r)) * r^(p*n) * n^(p*n) / (exp(p*n) * (1-r)^n), where r = p/(p+LambertW(p*exp(-p))).
Sum_{k=1..n} (-1)^(n-k) * C(n,k) * k^(p*n) = n! * stirling2(p*n,n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]

Formula

a(n) ~ sqrt(r/(2-r)) * r^(2*n) * n^(2*n) / (exp(2*n) * (1-r)^n), where r = 2/(2+LambertW(2*exp(-2))).

A337002 a(n) = n! * Sum_{k=0..n} k^4 / k!.

Original entry on oeis.org

0, 1, 18, 135, 796, 4605, 28926, 204883, 1643160, 14795001, 147960010, 1627574751, 19530917748, 253901959285, 3554627468406, 53319412076715, 853110593292976, 14502880086064113, 261051841549259010, 4959984989436051511, 99199699788721190220
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Comments

Exponential convolution of fourth powers (A000583) and factorial numbers (A000142).

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]
  • PARI
    a(n) = n! * sum(k=0, n, k^4/k!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: x * (1 + 7*x + 6*x^2 + x^3) * exp(x) / (1 - x).
a(0) = 0; a(n) = n * (n^3 + a(n-1)).
a(n) ~ 15*exp(1)*n!. - Vaclav Kotesovec, Jan 13 2024

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022

A337085 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2020

Keywords

Examples

			Square array begins:
     1,    0,    0,    0,     0,     0,      0, ...
     2,    1,    1,    1,     1,     1,      1, ...
     5,    4,    6,   10,    18,    34,     66, ...
    16,   15,   27,   57,   135,   345,    927, ...
    65,   64,  124,  292,   796,  2404,   7804, ...
   326,  325,  645, 1585,  4605, 15145,  54645, ...
  1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
		

Crossrefs

Columns k=0..5 give A000522, A007526, A030297, A337001, A337002, A368719.
Main diagonal gives A256016.
Cf. A368724.

Programs

  • Mathematica
    T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)

Formula

T(0,k) = 0^k and T(n,k) = n^k + n * T(n-1,k) for n>0.
E.g.f. of column k: B_k(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials. - Seiichi Manyama, Jan 04 2024

A356687 a(n) = n! * Sum_{k=0..n} k^(2*n)/k!.

Original entry on oeis.org

1, 1, 18, 927, 94876, 16251045, 4210190766, 1543550310211, 764096247603480, 493254380867214249, 404269328278061434810, 411862088865696890314311, 512690851568229926690616948, 768775988931240685277619894157
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[k^(2*n)/k!, {k, 0, n}]; a[0] = 1; Array[a, 14, 0] (* Amiram Eldar, Aug 23 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(2*n)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^2*x)^k/(k!*(1-k^2*x)))))

Formula

E.g.f.: Sum_{k>=0} (k^2 * x)^k / (k! * (1 - k^2 * x)).

A356688 a(n) = n! * Sum_{k=0..n} k^(3*n)/k!.

Original entry on oeis.org

1, 1, 66, 21225, 18952156, 36175231585, 126556309395486, 733064060959310689, 6540867625730306094360, 85180334386943946887707617, 1552697061493449955344530003290, 38315904135534199560725372265381721, 1245605749857294018587318829355458646068
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[k^(3*n)/k!, {k, 0, n}]; a[0] = 1; Array[a, 13, 0] (* Amiram Eldar, Aug 23 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(3*n)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^3*x)^k/(k!*(1-k^3*x)))))

Formula

E.g.f.: Sum_{k>=0} (k^3 * x)^k / (k! * (1 - k^3 * x)).

A356689 a(n) = n! * Sum_{k=0..n} k^(k*n)/k!.

Original entry on oeis.org

1, 2, 20, 19887, 4297096180, 298028721722131825, 10314430386434427534836297166, 256923580889667624113335512704714686054849, 6277101737079381675512518990977258744796239498871290255000
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(k*n)/k!);
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^k*x)^k/(k!*(1-k^k*x)))))

Formula

E.g.f.: Sum_{k>=0} (k^k * x)^k / (k! * (1 - k^k * x)).
Showing 1-10 of 17 results. Next