A031971
a(n) = Sum_{k=1..n} k^n.
Original entry on oeis.org
1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1
Chris du Feu (chris(AT)beckingham0.demon.co.uk)
- J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.
-
a031971 = sum . a089072_row -- Reinhard Zumkeller, Mar 18 2013
-
[&+[(k)^n: k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011
-
a := n->sum('i'^n,'i'=1..n);
# alternative
A031971 := proc(n)
(bernoulli(n+1,n+1)-bernoulli(n+1))/(n+1) ;
end proc: # R. J. Mathar, May 10 2013
-
Table[Zeta[-n] - Zeta[-n, n + 1], {n, 25}] (* Alexander Adamchuk, Jul 21 2006 *)
Table[Total[Range[n]^n], {n,25}] (* T. D. Noe, Apr 19 2011 *)
Table[HarmonicNumber[n, -n], {n, 1, 25}] (* Jean-François Alcover, Apr 09 2015 *)
-
a(n)=sum(k=1,n,k^n) \\ Charles R Greathouse IV, Jun 05 2015
-
from sympy import harmonic
def A031971(n):
return harmonic(n,-n) # Chai Wah Wu, Feb 15 2020
A072034
a(n) = Sum_{k=0..n} binomial(n,k)*k^n.
Original entry on oeis.org
1, 1, 6, 54, 680, 11000, 217392, 5076400, 136761984, 4175432064, 142469423360, 5372711277824, 221903307604992, 9961821300640768, 482982946946734080, 25150966159083264000, 1400031335107317628928, 82960293298087664648192
Offset: 0
-
seq(add(binomial(n,k)*k^n,k=0..n),n=0..17); # Peter Luschny, Jun 09 2015
-
Table[Sum[Binomial[n,k]k^n,{k,0,n}],{n,1,20}] (* Geoffrey Critzer, Sep 16 2012 *)
-
x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 10 2017
-
a(n) = sum(k=0, n, binomial(n,k)*k^n); \\ Michel Marcus, Nov 10 2017
Offset set to 0 and a(0) = 1 prepended by
Peter Luschny, Jun 09 2015
A337001
a(n) = n! * Sum_{k=0..n} k^3 / k!.
Original entry on oeis.org
0, 1, 10, 57, 292, 1585, 9726, 68425, 547912, 4931937, 49320370, 542525401, 6510306540, 84633987217, 1184875823782, 17773137360105, 284370197765776, 4834293362023105, 87017280516421722, 1653328329812019577, 33066566596240399540, 694397898521048399601
Offset: 0
-
Table[n! Sum[k^3/k!, {k, 0, n}], {n, 0, 21}]
nmax = 21; CoefficientList[Series[x (1 + 3 x + x^2) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = n (n^2 + a[n - 1]); Table[a[n], {n, 0, 21}]
-
a(n) = n! * sum(k=0, n, k^3/k!); \\ Michel Marcus, Aug 12 2020
A242446
a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).
Original entry on oeis.org
1, 18, 924, 93320, 15609240, 3903974592, 1364509038592, 635177480713344, 379867490829555840, 283825251434680651520, 259092157573229145859584, 283735986144895532781391872, 367138254141051794797009309696, 554136240038549806366753446051840
Offset: 1
-
Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]
A337002
a(n) = n! * Sum_{k=0..n} k^4 / k!.
Original entry on oeis.org
0, 1, 18, 135, 796, 4605, 28926, 204883, 1643160, 14795001, 147960010, 1627574751, 19530917748, 253901959285, 3554627468406, 53319412076715, 853110593292976, 14502880086064113, 261051841549259010, 4959984989436051511, 99199699788721190220
Offset: 0
-
Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]
-
a(n) = n! * sum(k=0, n, k^4/k!); \\ Michel Marcus, Aug 12 2020
A332408
a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022
A337085
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.
Original entry on oeis.org
1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
2, 1, 1, 1, 1, 1, 1, ...
5, 4, 6, 10, 18, 34, 66, ...
16, 15, 27, 57, 135, 345, 927, ...
65, 64, 124, 292, 796, 2404, 7804, ...
326, 325, 645, 1585, 4605, 15145, 54645, ...
1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
-
T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
A356687
a(n) = n! * Sum_{k=0..n} k^(2*n)/k!.
Original entry on oeis.org
1, 1, 18, 927, 94876, 16251045, 4210190766, 1543550310211, 764096247603480, 493254380867214249, 404269328278061434810, 411862088865696890314311, 512690851568229926690616948, 768775988931240685277619894157
Offset: 0
-
a[n_] := n! * Sum[k^(2*n)/k!, {k, 0, n}]; a[0] = 1; Array[a, 14, 0] (* Amiram Eldar, Aug 23 2022 *)
-
a(n) = n!*sum(k=0, n, k^(2*n)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^2*x)^k/(k!*(1-k^2*x)))))
A356688
a(n) = n! * Sum_{k=0..n} k^(3*n)/k!.
Original entry on oeis.org
1, 1, 66, 21225, 18952156, 36175231585, 126556309395486, 733064060959310689, 6540867625730306094360, 85180334386943946887707617, 1552697061493449955344530003290, 38315904135534199560725372265381721, 1245605749857294018587318829355458646068
Offset: 0
-
a[n_] := n! * Sum[k^(3*n)/k!, {k, 0, n}]; a[0] = 1; Array[a, 13, 0] (* Amiram Eldar, Aug 23 2022 *)
-
a(n) = n!*sum(k=0, n, k^(3*n)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^3*x)^k/(k!*(1-k^3*x)))))
A356689
a(n) = n! * Sum_{k=0..n} k^(k*n)/k!.
Original entry on oeis.org
1, 2, 20, 19887, 4297096180, 298028721722131825, 10314430386434427534836297166, 256923580889667624113335512704714686054849, 6277101737079381675512518990977258744796239498871290255000
Offset: 0
-
a(n) = n!*sum(k=0, n, k^(k*n)/k!);
-
my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^k*x)^k/(k!*(1-k^k*x)))))
Showing 1-10 of 17 results.
Comments