cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A003725 E.g.f.: exp( x * exp(-x) ).

Original entry on oeis.org

1, 1, -1, -2, 9, -4, -95, 414, 49, -10088, 55521, -13870, -2024759, 15787188, -28612415, -616876274, 7476967905, -32522642896, -209513308607, 4924388011050, -38993940088199, 11731860520780, 3807154270837281
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. this sequence (k=1), A292909 (k=2), A292910 (k=3), A292912 (k=4).

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x Exp[-x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    Vec(serlaplace(exp(exp(-x) * x))) \\ Charles R Greathouse IV, Sep 26 2017

Formula

a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n, k). - Vladeta Jovovic, Mar 15 2003
First column of A215652. - Peter Bala, Sep 14 2012
G.f.: Sum_{k>=0} x^k/(1 + k*x)^(k+1). - Ilya Gutkovskiy, Jun 25 2018

A256016 a(n) = n! * Sum_{k=0..n} k^n/k!.

Original entry on oeis.org

1, 1, 6, 57, 796, 15145, 374526, 11669665, 447595800, 20733553809, 1141067915290, 73552752257281, 5484203261135028, 467864288815609465, 45236104846954021014, 4915818294874879570305, 596044703812665607374256, 80118478395137652912476449, 11870487496575403846760198322
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 01 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^n/k!,{k,0,n}],{n,1,20}]]
  • PARI
    a(n) = n!*sum(k=0, n, k^n/k!); \\ Michel Marcus, Aug 15 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-k*x))))) \\ Seiichi Manyama, Aug 23 2022

Formula

a(n) ~ e*Bell(n)*n!, for the Bell numbers see A000110.
a(n) ~ sqrt(2*Pi) * n^(2*n+1/2) * exp(n/LambertW(n)-2*n) / (sqrt(1+LambertW(n)) * LambertW(n)^n).
E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - k * x)). - Seiichi Manyama, Aug 23 2022
a(n) = n! * [x^n] B_n(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials. - Seiichi Manyama, Jan 04 2024
a(n) = Sum_{k=0..n} k^n*(n-k)!*binomial(n,k). - Ridouane Oudra, Jun 16 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, Aug 14 2020

A216857 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.

Original entry on oeis.org

0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0

Views

Author

Geoffrey Critzer, Sep 17 2012

Keywords

Comments

Essentially the same as A038049.
Also the number of rooted trees whose nodes are labeled with the blocks of a set partition of {1,2,...,n} each having a distinguished element. (See A000248.)
The bijection is straightforward. The trees correspond to functional digraphs mapping the distinguished elements towards the root. All the elements within each block are mapped to the distinguished element of that block. The distinguished element in the root node is the fixed point.

Crossrefs

Programs

  • Mathematica
    With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
  • PARI
    for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: T(x*exp(x)) where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-1).
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jul 09 2013
O.g.f.: Sum_{n>=0} n^(n-1)* x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
E.g.f.: the compositional inverse of A(x) is -A(-x). - Alexander Burstein, Aug 11 2018

A096131 Sum of the terms of the n-th row of triangle pertaining to A096130.

Original entry on oeis.org

1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Comments

The product of the terms of the n-th row is given by A034841.
Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - Olivier Gérard, Aug 08 2016

Examples

			From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
		

Crossrefs

Programs

  • GAP
    List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
    
  • Maple
    A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
    seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
  • Mathematica
    Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018

Formula

a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013

Extensions

More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar

A226391 a(n) = Sum_{k=0..n} binomial(k*n, k).

Original entry on oeis.org

1, 2, 9, 103, 2073, 58481, 2101813, 91492906, 4671050401, 273437232283, 18046800575211, 1325445408799007, 107200425419863009, 9466283137384124247, 906151826270369213655, 93459630239922214535911, 10331984296666203358431361, 1218745075041575200343722415
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 06 2013

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n*j,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    Table[Sum[Binomial[k*n, k], {k, 0, n}], {n, 0, 20}]
  • Maxima
    A226391(n):=sum(binomial(k*n,k), k,0,n); makelist(A226391(n),n,0,30); /* Martin Ettl, Jun 06 2013 */
    
  • SageMath
    @CachedFunction
    def A226391(n): return sum(binomial(n*j, j) for j in (0..n))
    [A226391(n) for n in (0..30)] # G. C. Greubel, Aug 31 2022

Formula

a(n) ~ binomial(n^2, n).

A242446 a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).

Original entry on oeis.org

1, 18, 924, 93320, 15609240, 3903974592, 1364509038592, 635177480713344, 379867490829555840, 283825251434680651520, 259092157573229145859584, 283735986144895532781391872, 367138254141051794797009309696, 554136240038549806366753446051840
Offset: 1

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=1..n} C(n,k) * k^(p*n) is asymptotic to sqrt(r/(p+r-p*r)) * r^(p*n) * n^(p*n) / (exp(p*n) * (1-r)^n), where r = p/(p+LambertW(p*exp(-p))).
Sum_{k=1..n} (-1)^(n-k) * C(n,k) * k^(p*n) = n! * stirling2(p*n,n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]

Formula

a(n) ~ sqrt(r/(2-r)) * r^(2*n) * n^(2*n) / (exp(2*n) * (1-r)^n), where r = 2/(2+LambertW(2*exp(-2))).

A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).

Original entry on oeis.org

1, 28, 3612, 1064480, 560632400, 462479403072, 550095467201728, 891290348282967040, 1887146395301619304704, 5058811707344107766328320, 16746136671945501439084657664, 67088193422344140016282100785152, 319900900946743851959321101768511488
Offset: 0

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
  • PARI
    for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...

A360618 Expansion of Sum_{k>=0} (k * x * (1 + k*x))^k.

Original entry on oeis.org

1, 1, 5, 43, 515, 7950, 150086, 3349945, 86296849, 2519907605, 82249222661, 2967449372028, 117266100841668, 5037282382077353, 233701540415817409, 11645959855678136519, 620389246928233860127, 35181554115178393462386, 2116059351692554708911298
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^n, {k, 0, n/2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-k)^n*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-k)^n * binomial(n-k,k).
a(n) ~ c * d^n * n^n, where d = (1-r)^(2-r) / (r^r * (1-2*r)^(1-2*r)) where r = 0.163662210494891118101893756356803907477984542... is the root of the equation (1-2*r)^2 = r*(1-r) * exp(1/(1-r)) and c = 0.78619174295244329885973980954744130517052330684023764340463604028671858569... - Vaclav Kotesovec, Feb 14 2023

A258773 Triangle read by rows, T(n,k) = (-1)^(n-k)*C(n,k)*k^n, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -2, 4, 0, 3, -24, 27, 0, -4, 96, -324, 256, 0, 5, -320, 2430, -5120, 3125, 0, -6, 960, -14580, 61440, -93750, 46656, 0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543, 0, -8, 7168, -367416, 4587520, -21875000, 47029248, -46118408, 16777216
Offset: 0

Views

Author

Peter Luschny, Jun 09 2015

Keywords

Comments

The row polynomials are p(0, x) = 1, and p(n, x) = Eu(x)^n (x-1)^n, for n >= 1, where Eu(x) := x*d/dx is the Euler derivative with respect to x. See A075513. - Wolfdieter Lang, Oct 12 2022
Coefficients of the Sidi polynomials (-1)^n*x*D_{n,0,n}(x), for n >= 0, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980]. - Wolfdieter Lang, Apr 10 2023

Examples

			Triangle begins:
  [1]
  [0,  1]
  [0, -2,     4]
  [0,  3,   -24,     27]
  [0, -4,    96,   -324,     256]
  [0,  5,  -320,   2430,   -5120,    3125]
  [0, -6,   960, -14580,   61440,  -93750,    46656]
  [0,  7, -2688,  76545, -573440, 1640625, -1959552, 823543]
		

Crossrefs

Programs

  • Maple
    seq(seq((-1)^(n-k)*binomial(n, k)*k^n, k=0..n), n=0..8);
    T_row := proc(n) (-1)^n*(1-exp(x))^n/n!; diff(%,[x$n]); subs(exp(x)=t, n!*expand(%,x)); CoefficientList(%,t) end: seq(print(T_row(n)), n=0..7);
  • Mathematica
    Flatten@Table[(-1)^(n - k) Binomial[n, k] k^n, {n, 0 , 10}, {k, 0, n}] (* G. C. Greubel, Dec 17 2015 *)

Formula

Sum_{k=0..n} T(n,k) = n!.
Sum_{k=0..n} |T(n,k)| = A072034(n).
Sum_{n>=0} Sum_{k=0..n} T(n,k) x^k y^n/n! = 1/(1 + W(-x*y*exp(-y))) where W is the Lambert W function. - Robert Israel, Dec 16 2015
T(n,n) = A000312(n). - Peter Luschny, Dec 17 2015
T(n, k+1) = n * A075513(n, k) if n > 0. - Michael Somos, May 13 2018

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022
Showing 1-10 of 36 results. Next