A003725
E.g.f.: exp( x * exp(-x) ).
Original entry on oeis.org
1, 1, -1, -2, 9, -4, -95, 414, 49, -10088, 55521, -13870, -2024759, 15787188, -28612415, -616876274, 7476967905, -32522642896, -209513308607, 4924388011050, -38993940088199, 11731860520780, 3807154270837281
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A256016
a(n) = n! * Sum_{k=0..n} k^n/k!.
Original entry on oeis.org
1, 1, 6, 57, 796, 15145, 374526, 11669665, 447595800, 20733553809, 1141067915290, 73552752257281, 5484203261135028, 467864288815609465, 45236104846954021014, 4915818294874879570305, 596044703812665607374256, 80118478395137652912476449, 11870487496575403846760198322
Offset: 0
-
Join[{1}, Table[n!*Sum[k^n/k!,{k,0,n}],{n,1,20}]]
-
a(n) = n!*sum(k=0, n, k^n/k!); \\ Michel Marcus, Aug 15 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-k*x))))) \\ Seiichi Manyama, Aug 23 2022
A216857
Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.
Original entry on oeis.org
0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0
-
With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
-
for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
-
my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017
A096131
Sum of the terms of the n-th row of triangle pertaining to A096130.
Original entry on oeis.org
1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1
From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
Cf.
A014062,
A096130,
A034841,
A007318,
A226391,
A167009,
A167008,
A167010,
A072034,
A086331,
A349470.
-
List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
-
A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
-
Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
-
a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018
A226391
a(n) = Sum_{k=0..n} binomial(k*n, k).
Original entry on oeis.org
1, 2, 9, 103, 2073, 58481, 2101813, 91492906, 4671050401, 273437232283, 18046800575211, 1325445408799007, 107200425419863009, 9466283137384124247, 906151826270369213655, 93459630239922214535911, 10331984296666203358431361, 1218745075041575200343722415
Offset: 0
-
[(&+[Binomial(n*j,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Aug 31 2022
-
Table[Sum[Binomial[k*n, k], {k, 0, n}], {n, 0, 20}]
-
A226391(n):=sum(binomial(k*n,k), k,0,n); makelist(A226391(n),n,0,30); /* Martin Ettl, Jun 06 2013 */
-
@CachedFunction
def A226391(n): return sum(binomial(n*j, j) for j in (0..n))
[A226391(n) for n in (0..30)] # G. C. Greubel, Aug 31 2022
A242446
a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).
Original entry on oeis.org
1, 18, 924, 93320, 15609240, 3903974592, 1364509038592, 635177480713344, 379867490829555840, 283825251434680651520, 259092157573229145859584, 283735986144895532781391872, 367138254141051794797009309696, 554136240038549806366753446051840
Offset: 1
-
Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]
A242449
a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).
Original entry on oeis.org
1, 28, 3612, 1064480, 560632400, 462479403072, 550095467201728, 891290348282967040, 1887146395301619304704, 5058811707344107766328320, 16746136671945501439084657664, 67088193422344140016282100785152, 319900900946743851959321101768511488
Offset: 0
-
Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
-
for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017
A360618
Expansion of Sum_{k>=0} (k * x * (1 + k*x))^k.
Original entry on oeis.org
1, 1, 5, 43, 515, 7950, 150086, 3349945, 86296849, 2519907605, 82249222661, 2967449372028, 117266100841668, 5037282382077353, 233701540415817409, 11645959855678136519, 620389246928233860127, 35181554115178393462386, 2116059351692554708911298
Offset: 0
-
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^n, {k, 0, n/2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x))^k))
-
a(n) = sum(k=0, n\2, (n-k)^n*binomial(n-k, k));
A258773
Triangle read by rows, T(n,k) = (-1)^(n-k)*C(n,k)*k^n, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -2, 4, 0, 3, -24, 27, 0, -4, 96, -324, 256, 0, 5, -320, 2430, -5120, 3125, 0, -6, 960, -14580, 61440, -93750, 46656, 0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543, 0, -8, 7168, -367416, 4587520, -21875000, 47029248, -46118408, 16777216
Offset: 0
Triangle begins:
[1]
[0, 1]
[0, -2, 4]
[0, 3, -24, 27]
[0, -4, 96, -324, 256]
[0, 5, -320, 2430, -5120, 3125]
[0, -6, 960, -14580, 61440, -93750, 46656]
[0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543]
-
seq(seq((-1)^(n-k)*binomial(n, k)*k^n, k=0..n), n=0..8);
T_row := proc(n) (-1)^n*(1-exp(x))^n/n!; diff(%,[x$n]); subs(exp(x)=t, n!*expand(%,x)); CoefficientList(%,t) end: seq(print(T_row(n)), n=0..7);
-
Flatten@Table[(-1)^(n - k) Binomial[n, k] k^n, {n, 0 , 10}, {k, 0, n}] (* G. C. Greubel, Dec 17 2015 *)
A332408
a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022
Showing 1-10 of 36 results.
Comments