cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 83 results. Next

A229303 Numbers m such that A031971(2*m) == m (mod 2*m).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125
Offset: 1

Views

Author

Keywords

Comments

Complement of A229307.
The asymptotic density is in [0.583154, 0.58455].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
Up to (but excluding) the term 68 the exponents of even prime powers with squarefree neighbors. - Juri-Stepan Gerasimov, Apr 30 2016.

Crossrefs

Cf. A014117 (numbers k such that A031971(k)==1 (mod k)).
Cf. A229300 (numbers k such that A031971(1806*k)== k (mod 1806*k)).
Cf. A229301 (numbers k such that A031971(42*k) == k (mod 42*k)).
Cf. A229302 (numbers k such that A031971(6*k) == k (mod 6*k)).
Cf. A229303 (numbers k such that A031971(2*k) == k (mod 2*k)).
Cf. A229304 (numbers k such that A031971(1806*k) <> k (mod 1806*k)).
Cf. A229305 (numbers k such that A031971(42*k) <> k (mod 42*k)).
Cf. A229306 (numbers k such that A031971(6*k) <> k (mod 6*k)).
Cf. A229307 (numbers k such that A031971(2*k) <> k (mod 2*k)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Maple
    a:= proc(n) option remember; local m;
          for m from 1+`if`(n=1, 0, a(n-1)) do
            if (t-> m=(add(k&^t mod t, k=1..t) mod t))(2*m)
               then return m fi
          od
        end:
    seq(a(n), n=1..200);  # Alois P. Heinz, May 01 2016
  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[2*#] == # &]
  • PARI
    b(n)=sum(k=1, n, Mod(k,n)^n);
    for(n=1,200,if(b(2*n)==n,print1(n,", ")));
    \\ Joerg Arndt, May 01 2016

A229307 Numbers k such that A031971(2*k) <> k (mod 2*k).

Original entry on oeis.org

3, 6, 9, 10, 12, 15, 18, 20, 21, 24, 27, 30, 33, 36, 39, 40, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 70, 72, 75, 78, 80, 81, 84, 87, 90, 93, 96, 99, 100, 102, 105, 108, 110, 111, 114, 117, 120, 123, 126, 129, 130, 132, 135, 136, 138, 140, 141, 144
Offset: 1

Views

Author

Keywords

Comments

Complement of A229303.
The asymptotic density is in [0.41545, 0.416846].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]

Crossrefs

Cf. A031971.
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[500], !g[2*#] == # &]

A229300 Numbers n such that A031971(1806*n) == n (mod 1806*n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81
Offset: 1

Views

Author

Keywords

Comments

Complement of A229304.
The asymptotic density is in [0.7747,0.812570].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. (Comment corrected and expanded by Jonathan Sondow, Dec 10 2013.)

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
Cf. A054377 (primary pseudoperfect numbers).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[1806*#] == # &]

A229301 Numbers n such that A031971(42*n) == n (mod 42*n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82
Offset: 1

Views

Author

Keywords

Comments

Complement of A229305.
The asymptotic density is in [0.7880, 0.8079].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. (Comment corrected and expanded by Jonathan Sondow, Dec 10 2013.)

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Maple
    filter:= proc(n) local t,k;
      t:= add(k &^ (42*n) mod (42*n),k=1..42*n);
      t mod (42*n) = n
    end proc:
    select(filter, [$1..100]); # Robert Israel, Dec 15 2020
  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n];Select[Range[100], g[42*#] == # &]

A229302 Numbers n such that A031971(6*n) == n (mod 6*n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93
Offset: 1

Views

Author

Keywords

Comments

Complement of A229306.
The asymptotic density is in [0.6986, 0.7073].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[6*#] == # &]

A229304 Numbers n such that A031971(1806*n) <> n (mod 1806*n).

Original entry on oeis.org

10, 20, 26, 30, 40, 50, 52, 55, 57, 58, 60, 70, 78, 80, 90, 100, 104, 110, 114, 116, 120, 130, 136, 140, 150, 155, 156, 160, 165, 170, 171, 174, 180, 182, 190, 200, 208, 210, 220, 222, 228, 230, 232, 234, 240, 250, 253, 260, 270, 272, 275, 280, 285, 286, 290
Offset: 1

Views

Author

Keywords

Comments

Complement of A229300.
The asymptotic density is in [0.1921, 0.212].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[1806*#] == # &]

A229305 Numbers n such that A031971(42*n) <> n (mod 42*n).

Original entry on oeis.org

10, 20, 26, 30, 40, 43, 50, 52, 55, 57, 58, 60, 70, 78, 80, 86, 90, 100, 104, 110, 114, 116, 120, 129, 130, 136, 140, 150, 155, 156, 160, 165, 170, 171, 172, 174, 180, 182, 190, 200, 208, 210, 215, 220, 222, 228, 230, 232, 234, 240, 250, 253, 258, 260, 270
Offset: 1

Views

Author

Keywords

Comments

Complement of A229301.
The asymptotic density is in [0.2091, 0.2317].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[42*#] == # &]

A229306 Numbers n such that A031971(6*n) <> n (mod 6*n).

Original entry on oeis.org

7, 10, 14, 20, 21, 26, 28, 30, 35, 40, 42, 49, 50, 52, 55, 56, 57, 60, 63, 70, 77, 78, 80, 84, 90, 91, 98, 100, 104, 105, 110, 112, 114, 119, 120, 126, 130, 133, 136, 140, 147, 150, 154, 155, 156, 160, 161, 165, 168, 170, 171, 175, 180, 182, 189, 190, 196
Offset: 1

Views

Author

Keywords

Comments

Complement of A229302.
The asymptotic density is in [0.2927, 0.3014].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[6*#] == # &]

A230311 Numbers n such that 1^(k*n) + 2^(k*n) + ... + (k*n)^(k*n) == k (mod k*n) for some k; that is, numbers n such that A031971(k*n) == k (mod k*n) for some k.

Original entry on oeis.org

1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Least such k is A231409. No other terms for n < 10^110 (see Grau, Oller-Marcen, Sondow (2015) p. 428). - Jonathan Sondow, Nov 30 2013
Same as quotients Q = m/n of solutions to the congruence 1^m + 2^m + . . . + m^m == n (mod m) with n|m. For Q > 1, a necessary condition is that Q be a primary pseudoperfect number A054377. The condition is not sufficient since the primary pseudoperfect number 52495396602 is not a member. - Jonathan Sondow, Jul 13 2014

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
Cf. A054377 (primary pseudoperfect numbers).

Formula

a(n) = A054377(n-1) for n = 2, 3, 4, 5, 6, 7, but a(8) = A054377(8). - Jonathan Sondow, Jul 13 2014

Extensions

Definition corrected by Jonathan Sondow, Nov 30 2013

A229312 Numbers n such that A031971(47058*n) == n (mod 47058*n).

Original entry on oeis.org

5, 15, 25, 45, 55, 65, 75, 85, 95, 115, 125, 135, 145, 155, 165, 185, 195, 205, 215, 225, 255, 265, 275, 295, 305, 325, 345, 355, 365, 375, 395, 405, 415, 425, 435, 445, 465, 475, 485, 495, 505, 515, 535, 545, 555, 565, 575, 585, 605, 615, 625, 635, 645, 655
Offset: 1

Views

Author

Keywords

Comments

The number 47058 occurring in the name is the sixth term of A230311.
The asymptotic density lies in the interval [0.0560465, 0.0800567].
Complement of A230313 .
For n<235295, A031971(47058*n) == n (mod 47058*n) if and only if A031971(2214502422*n) <> n (mod 2214502422*n).
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i,
       1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], supercar[47058*#, 47058*#] == # &]
Showing 1-10 of 83 results. Next