cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356628 a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(n - 2*k)!.

Original entry on oeis.org

1, 1, 1, 7, 25, 181, 1561, 12811, 188497, 2071945, 38889361, 620762671, 12917838121, 291278938237, 6667342764265, 194869722610291, 5137978752994081, 177509783765281681, 5610285632192738977, 215195998789004395735, 8228064506323330305721
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 2*k)^k/(n - 2*k)!, {k, 0, Floor[n/2]}]; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(n-2*k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^2)))))

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x^2)).
a(n) ~ sqrt(Pi) * exp((n-1)/(2*LambertW(exp(1/3)*(n-1)/3)) - 3*n/2) * n^((3*n + 1)/2) / (sqrt(1 + LambertW(exp(1/3)*(n - 1)/3)) * 3^((n+1)/2) * LambertW(exp(1/3)*(n-1)/3)^(n/2)). - Vaclav Kotesovec, Nov 01 2022

A356629 a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(n - 3*k)!.

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 5881, 82321, 547345, 6053041, 167991121, 2179469161, 22892967241, 788375451865, 18046198202761, 245523704069281, 7548055281543841, 270833271588545761, 5369819950838359585, 141456920470310708281, 6760255576117937586841
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 3*k)^k/(n - 3*k)!, {k, 0, Floor[n/3]}]; a[0] = 1; Array[a, 22, 0] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(n-3*k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^3)))))

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x^3)).
a(n) ~ sqrt(Pi/3) * exp((2*n - 3)/(6*LambertW(exp(1/4)*(2*n - 3)/8)) - 4*n/3) * n^(4*n/3 + 1/2) / (sqrt(1 + LambertW(exp(1/4)*(2*n - 3)/8)) * 2^(2*n/3 + 1/2) * LambertW(exp(1/4)*(2*n - 3)/8)^(n/3)). - Vaclav Kotesovec, Nov 01 2022

A356608 a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(24^k * (n - 4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 1261, 13861, 106261, 558361, 2709136, 32802771, 447762316, 4093711441, 28011714641, 293624974441, 5549250905281, 80454378591121, 815886496908946, 8379058314620071, 168672787637953446, 3514729162490432041, 51656083670790267901
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 4*k)^k/(24^k*(n - 4*k)!), {k, 0, Floor[n/4]}]; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, (n-4*k)^k/(24^k*(n-4*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x^4/24)))))

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x^4/24)).
Showing 1-3 of 3 results.