A089148
Expansion of e.g.f.: 1/(exp(x) - x).
Original entry on oeis.org
1, 0, -1, -1, 5, 19, -41, -519, -183, 19223, 73451, -847067, -8554547, 32488611, 977198559, 1325135969, -116987762287, -860498433233, 13730866757587, 243612350234973, -1120827248102379, -62079344419449925, -185852602587850681, 15185914155303053209
Offset: 0
-
b:= proc(n) b(n):= -`if` (n<0, 1, add(b(n-i)/(i-1)!, i=1..n+1)) end:
a:= n-> (-1)^n*n!*b(n):
seq(a(n), n=0..30); # Alois P. Heinz, May 29 2013
-
a = CoefficientList[Series[1/( E^ x - x), {x, 0, 30}], x]; Table[(n - 1)! *a[[n]], {n, 1, Length[a]}] (* Roger L. Bagula and Gary W. Adamson, Oct 06 2008 *)
With[{nn=30},CoefficientList[Series[1/(Exp[x]-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 03 2017 *)
-
a(n):=sum(sum(k!*binomial(n,l)*(-1)^(k-l)*stirling2(n-l,k-l), l,0,k), k,0,n); /* Vladimir Kruchinin, May 29 2013 */
-
a(n):=n!*sum((-n-1+k)^k/k!,k,0,n); /* Tani Akinari, Mar 26 2023 */
-
x='x+O('x^66); Vec(serlaplace(1/(exp(x)-x))) \\ Joerg Arndt, May 29 2013
-
def A089148_list(len):
f, R, C = 1, [], [1]+[0]*len
for n in (1..len):
for k in range(n, 0, -1):
C[k] = C[k-1]*(1/(k-1) if k>1 else 1)
C[0] = -sum((-1)^k*C[k] for k in (1..n))
R.append(C[0]*f)
f *= n
return R
print(A089148_list(24)) # Peter Luschny, Feb 21 2016
A352252
Expansion of e.g.f. 1 / (1 - x * cos(x)).
Original entry on oeis.org
1, 1, 2, 3, 0, -55, -480, -3157, -15232, -16623, 898560, 16316179, 194574336, 1666248025, 5418649600, -170157839685, -5164467978240, -92955464490463, -1188910801354752, -7329026447550685, 157257042777866240, 7516793832172469481, 187200588993188069376
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x Cos[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^k Binomial[n, 2 k + 1] (2 k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^30)); Vec(serlaplace(1 / (1 - x * cos(x)))) \\ Michel Marcus, Mar 10 2022
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*I^(n-k)*a185951(n, k)); \\ Seiichi Manyama, Feb 17 2025
A305990
Expansion of e.g.f.: (1+x) / (exp(-x) - x).
Original entry on oeis.org
1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
Offset: 0
-
nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
a={1};For[n=1,n<20,n++,AppendTo[a,Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!),{k,0,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)
A351776
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * (n-j)^j/j!.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 4, 3, 0, 1, -4, 12, -6, -4, 0, 1, -5, 24, -63, -8, -25, 0, 1, -6, 40, -204, 420, 150, 114, 0, 1, -7, 60, -465, 2288, -3435, -972, 287, 0, 1, -8, 84, -882, 7180, -32020, 33462, 3682, -4152, 0, 1, -9, 112, -1491, 17256, -138525, 537576, -379155, 6256, 1647, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, 0, 4, 12, 24, 40, ...
0, 3, -6, -63, -204, -465, ...
0, -4, -8, 420, 2288, 7180, ...
0, -25, 150, -3435, -32020, -138525, ...
-
T(n, k) = n!*sum(j=0, n, (-k)^(n-j)*(n-j)^j/j!);
-
T(n, k) = if(n==0, 1, -k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
A351791
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (-k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -2, -3, 24, 1, 1, -4, -6, -4, 120, 1, 1, -6, -3, 40, 25, 720, 1, 1, -8, 6, 132, 120, 114, 5040, 1, 1, -10, 21, 248, -375, -1872, -287, 40320, 1, 1, -12, 42, 364, -2120, -8298, -3920, -4152, 362880, 1, 1, -14, 69, 456, -5655, -12144, 86121, 155776, -1647, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 0, -2, -4, -6, -8, ...
6, -3, -6, -3, 6, 21, ...
24, -4, 40, 132, 248, 364, ...
120, 25, 120, -375, -2120, -5655, ...
Main diagonal gives (-1)^n *
A302398(n).
-
T[n_, k_] := n!*(1 + Sum[(-k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (-k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, (-k)^(n-1-j)*binomial(n-1, j)*T(j, k)));
A368271
Expansion of e.g.f. exp(2*x) / (1 + x*exp(x)).
Original entry on oeis.org
1, 1, 0, -1, 4, 7, -74, 23, 2136, -7345, -77006, 712879, 2499124, -69799897, 88342398, 7311735143, -50617554896, -762825930977, 12821702643946, 56041362405119, -2956159258069044, 8447845572175031, 660257137187089270, -7376306690095890185
Offset: 0
A302398
a(n) = n! * [x^n] 1/(1 + x*exp(n*x)).
Original entry on oeis.org
1, -1, -2, 3, 248, 5655, 62064, -3516625, -376936064, -21890186577, -495165203200, 96687112380639, 20607024735783936, 2471270260977141767, 142697263160045590528, -25986252776953159328625, -11860424645318274482077696, -2719428501410438623907546529, -372732332273232481973818294272
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + x Exp[n x]), {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! Sum[(-1)^(n - k) (n (n - k))^k/k!, {k, 0, n}], {n, 18}]]
Join[{1}, Table[Sum[(-1)^k k! (n k)^(n - k) Binomial[n, k], {k, 0, n}], {n, 18}]]
A332627
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022
A336959
E.g.f.: 1 / (1 - x * exp(-2*x)).
Original entry on oeis.org
1, 1, -2, -6, 40, 120, -1872, -3920, 155776, 56448, -19946240, 44799744, 3588719616, -21265587200, -850126505984, 9423227873280, 251457224998912, -4665150579572736, -88212028284665856, 2663461772025462784, 34353949630376181760, -1756678038088484388864
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 - x Exp[-2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(-2 (n - k))^k/k!, {k, 0, n}], {n, 1, 21}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k (-2)^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
A352250
Expansion of e.g.f. 1 / (1 - x * sin(x)) (even powers only).
Original entry on oeis.org
1, 2, 20, 486, 21944, 1591210, 169207092, 24808395262, 4796420822384, 1182349445882706, 361939981107422060, 134705596642758848806, 59900689507397744253096, 31365504832631796986962426, 19102102945852191813235300004, 13387748268024668296590660222030
Offset: 0
-
nmax = 30; Take[CoefficientList[Series[1/(1 - x Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = 2 Sum[(-1)^(k + 1) Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
-
my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sin(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
Showing 1-10 of 17 results.
Comments