A009444
E.g.f. log(1 + x*exp(-x)).
Original entry on oeis.org
0, 1, -3, 11, -58, 409, -3606, 38149, -470856, 6641793, -105398650, 1858413061, -36044759796, 762659322385, -17481598316742, 431535346662645, -11413394655983536, 321989729198400385, -9651573930139850610
Offset: 0
-
With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 22 2017 *)
-
a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!,m,1,n); /* Vladimir Kruchinin, Oct 08 2011 */
-
x='x+O('x^66); /* that many terms */
egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */
Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
-
A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n))
[A009444(n) for n in (0..9)] # Peter Luschny, Jan 18 2016
A346753
Expansion of e.g.f. -log( 1 - x^2 * exp(x) / 2 ).
Original entry on oeis.org
0, 0, 1, 3, 9, 40, 225, 1491, 11578, 102852, 1026945, 11394955, 139091106, 1852061718, 26716291693, 415033647315, 6908006807640, 122645325067576, 2313546734841633, 46209268921868595, 974228913850588750, 21620679147700290210, 503810188866302511501
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x^2 Exp[x]/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 2] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]
A346754
Expansion of e.g.f. -log( 1 - x^3 * exp(x) / 3! ).
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 30, 175, 1176, 7364, 50520, 425205, 4010380, 39433966, 414654604, 4793188855, 59834495280, 789420239560, 11016095913456, 163423065359529, 2565467553034740, 42320595474149650, 732058678770177220, 13275485607004016011
Offset: 0
-
nmax = 23; CoefficientList[Series[-Log[1 - x^3 Exp[x]/3!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 3] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
A346755
Expansion of e.g.f. -log( 1 - x^4 * exp(x) / 4! ).
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 289245, 1892605, 16187171, 170721915, 1833783770, 18875258780, 196470797580, 2255939795436, 29179692064545, 401813199660285, 5612352516200815, 79620308330422475, 1182881543312932386
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 4] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 24}]
A305133
E.g.f.: (1-x) / (exp(-x) - x).
Original entry on oeis.org
1, 1, 3, 16, 113, 996, 10537, 130054, 1834513, 29111896, 513307601, 9955832514, 210652214665, 4828548335092, 119193293536969, 3152465052989326, 88935973854834593, 2665836978234855984, 84608363388300429601, 2834484567764492239354, 99956558270008377397081, 3701159405682998540166796, 143571313108884280622221913, 5822409005523822986360056326
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 113*x^4/4! + 996*x^5/5! + 10537*x^6/6! + 130054*x^7/7! + 1834513*x^8/8! + 29111896*x^9/9! + ...
RELATED TABLE.
The table of coefficients of x^k in exp(n*x) * A(x) begins:
n=0: [1, (1), 3/2, 8/3, 113/24, 83/10, 10537/720, 65027/2520, ...];
n=1: [(1), 2, (3), 29/6, 25/3, 1757/120, 929/36, 45863/1008, ...];
n=2: [1, (3), 11/2, (9), 361/24, 1559/60, 729/16, 101107/1260, ...];
n=3: [1, 4, (9), 97/6, (82/3), 1863/40, 3637/45, 714319/5040, ...];
n=4: [1, 5, 27/2, (82/3), 1169/24, (251/3), 103801/720, 632897/2520, ...];
n=5: [1, 6, 19, 87/2, (251/3), 17821/120, (5147/20), 2250499/5040, ...];
n=6: [1, 7, 51/2, 197/3, 3305/24, (5147/20), 65633/144, (14293/18), ...];
n=7: [1, 8, 33, 569/6, 652/3, 51893/120, (14293/18), 7078303/5040, ...]; ...
in which terms along the diagonals (enclosed in parenthesis) are equal:
[x^n] exp((n+1)*x) * A(x) = [x^(n+1)] exp(n*x) * A(x) for n >= 0.
-
With[{nn=30},CoefficientList[Series[(1-x)/(Exp[-x]-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 15 2022 *)
-
{a(n) = n!*polcoeff( (1-x) / (exp(-x +x*O(x^n)) - x), n)}
for(n=0,30,print1(a(n),", "))
A336183
a(n) = n^2 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^2.
Original entry on oeis.org
1, 5, 23, 154, 1389, 15636, 211231, 3329264, 59969097, 1215233380, 27362096211, 677690995488, 18310602210445, 535964033279780, 16894811428737495, 570603293774677696, 20556251540382371217, 786832900592755991364, 31889277719673937849243, 1364231113649221829763200
Offset: 1
-
a[n_] := a[n] = n^2 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
nmax = 20; CoefficientList[Series[-Log[1 - Exp[x] x (1 + x)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A336184
a(n) = n^3 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^3.
Original entry on oeis.org
1, 9, 53, 466, 5569, 82656, 1474045, 30664656, 729036801, 19499288680, 579487528861, 18943592776032, 675568129695601, 26099852672860344, 1085904530481561645, 48407032164910589056, 2301727955153266523521, 116286277045753464506568, 6220517619913795356269725
Offset: 1
-
a[n_] := a[n] = n^3 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^3, {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
nmax = 19; CoefficientList[Series[-Log[1 - Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A344469
Triangle read by rows: T(n, k) (0 <= k <= n) = [x^k] x^n * n! * [t^n] x*(1 + t)/(x*exp(-t) - t).
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 24, 24, 4, 24, 120, 180, 80, 5, 120, 720, 1440, 1080, 240, 6, 720, 5040, 12600, 13440, 5670, 672, 7, 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8, 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 2, 6, 3;
[3] 6, 24, 24, 4;
[4] 24, 120, 180, 80, 5;
[5] 120, 720, 1440, 1080, 240, 6;
[6] 720, 5040, 12600, 13440, 5670, 672, 7;
[7] 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8;
[8] 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9.
-
gf := x*(1+t)/(x*exp(-t)-t): ser := series(gf,t,12):
seq(seq(coeff(expand(x^n*n!*coeff(ser,t,n)),x,k),k=0..n),n=0..8);
-
(* rows[n], n[0..oo] *)
n=12;r={};For[k=0,kDetlef Meya, Jul 31 2023 *)
Showing 1-8 of 8 results.
Comments