A009306
Expansion of e.g.f.: log(1 + exp(x)*x).
Original entry on oeis.org
0, 1, 1, -1, -2, 9, 6, -155, 232, 3969, -20870, -118779, 1655028, 1610257, -143697722, 522358005, 13332842416, -138189937791, -1128293525646, 29219838555781, 17274118159180, -5993074252801839, 38541972209299966, 1179892974640047669
Offset: 0
-
a:= n-> n! *add(k^(n-k-1) *(-1)^(k+1) /(n-k)!, k=1..n):
seq(a(n), n=0..25);
-
With[{nn=30},CoefficientList[Series[Log[1+Exp[x]x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 22 2016 *)
-
seq(n)=Vec(serlaplace(log(1 + exp(x + O(x^n))*x)), -(n+1)) \\ Andrew Howroyd, May 26 2021
A305990
Expansion of e.g.f.: (1+x) / (exp(-x) - x).
Original entry on oeis.org
1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
Offset: 0
-
nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
a={1};For[n=1,n<20,n++,AppendTo[a,Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!),{k,0,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)
A346753
Expansion of e.g.f. -log( 1 - x^2 * exp(x) / 2 ).
Original entry on oeis.org
0, 0, 1, 3, 9, 40, 225, 1491, 11578, 102852, 1026945, 11394955, 139091106, 1852061718, 26716291693, 415033647315, 6908006807640, 122645325067576, 2313546734841633, 46209268921868595, 974228913850588750, 21620679147700290210, 503810188866302511501
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x^2 Exp[x]/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 2] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]
A346754
Expansion of e.g.f. -log( 1 - x^3 * exp(x) / 3! ).
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 30, 175, 1176, 7364, 50520, 425205, 4010380, 39433966, 414654604, 4793188855, 59834495280, 789420239560, 11016095913456, 163423065359529, 2565467553034740, 42320595474149650, 732058678770177220, 13275485607004016011
Offset: 0
-
nmax = 23; CoefficientList[Series[-Log[1 - x^3 Exp[x]/3!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 3] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
A346755
Expansion of e.g.f. -log( 1 - x^4 * exp(x) / 4! ).
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 289245, 1892605, 16187171, 170721915, 1833783770, 18875258780, 196470797580, 2255939795436, 29179692064545, 401813199660285, 5612352516200815, 79620308330422475, 1182881543312932386
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = Binomial[n, 4] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 24}]
A366459
Expansion of e.g.f. -log(1 - x^2 * exp(x)).
Original entry on oeis.org
0, 0, 2, 6, 24, 140, 990, 8442, 84056, 955656, 12227130, 173812430, 2717859012, 46362339036, 856770362630, 17050946225250, 363576478312560, 8269357341437072, 199837364514425586, 5113346326011170838, 138106722548779770620, 3926456810081828991780
Offset: 0
A228534
Triangular array read by rows: T(n,k) is the number of functional digraphs on {1,2,...,n} such that every element is mapped to a recurrent element and there are exactly k cycles, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 3, 1, 11, 9, 1, 58, 71, 18, 1, 409, 620, 245, 30, 1, 3606, 6274, 3255, 625, 45, 1, 38149, 73339, 45724, 11795, 1330, 63, 1, 470856, 977780, 697004, 221529, 33880, 2506, 84, 1, 6641793, 14678712, 11602394, 4309956, 823179, 82908, 4326, 108, 1
Offset: 1
1;
3, 1;
11, 9, 1;
58, 71, 18, 1;
409, 620, 245, 30, 1;
3606, 6274, 3255, 625, 45, 1;
38149, 73339, 45724, 11795, 1330, 63, 1;
470856, 977780, 697004, 221529, 33880, 2506, 84, 1;
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
g := n -> add(m^(n-m)*m!*binomial(n+1,m), m=1..n+1);
BellMatrix(g, 9); # Peter Luschny, Jan 29 2016
-
nn = 8; a = x Exp[x];
Map[Select[#, # > 0 &] &,
Drop[Range[0, nn]! CoefficientList[
Series[1/(1 - a)^y, {x, 0, nn}], {x, y}], 1]] // Grid
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, (n+1)! Sum[m^(n-m)/(n-m+1)!, {m, 1, n+1}]], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428, A009444]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: (-1)^n*A009444(n+1), 10) # Peter Luschny, Jan 18 2016
A275385
Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.
Original entry on oeis.org
1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
-
default(seriesprecision, 30);
S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016
A307125
Expansion of e.g.f. log(1 - log(1 - x*exp(x))).
Original entry on oeis.org
0, 1, 2, 4, 17, 123, 1052, 10568, 125750, 1726189, 26730394, 460982300, 8766443952, 182229703043, 4110207945794, 99970680376908, 2608221938476016, 72656914458625593, 2152355976206481570, 67562405794276542004, 2240111797037473955984, 78229640115171735522015, 2870092624821982184377202
Offset: 0
-
a:=series(log(1-log(1-x*exp(x))),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Apr 03 2019
-
nmax = 22; CoefficientList[Series[Log[1 - Log[1 - x Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
my(x = 'x + O('x^30)); concat(0, Vec(serlaplace(log(1 - log(1 - x*exp(x)))))) \\ Michel Marcus, Mar 26 2019
A366546
Expansion of e.g.f. -log(1 - x^3 * exp(x)).
Original entry on oeis.org
0, 0, 0, 6, 24, 60, 480, 5250, 40656, 363384, 4839120, 65198430, 859543080, 13311494196, 233478687624, 4190929145130, 79746180437280, 1667320408619760, 36965002127643936, 854734007793179574, 20962277675893792440, 544839141515795731500
Offset: 0
Showing 1-10 of 12 results.
Comments