cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A009306 Expansion of e.g.f.: log(1 + exp(x)*x).

Original entry on oeis.org

0, 1, 1, -1, -2, 9, 6, -155, 232, 3969, -20870, -118779, 1655028, 1610257, -143697722, 522358005, 13332842416, -138189937791, -1128293525646, 29219838555781, 17274118159180, -5993074252801839, 38541972209299966, 1179892974640047669
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009444.

Programs

  • Maple
    a:= n-> n! *add(k^(n-k-1) *(-1)^(k+1) /(n-k)!, k=1..n):
    seq(a(n), n=0..25);
  • Mathematica
    With[{nn=30},CoefficientList[Series[Log[1+Exp[x]x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 22 2016 *)
  • PARI
    seq(n)=Vec(serlaplace(log(1 + exp(x + O(x^n))*x)), -(n+1)) \\ Andrew Howroyd, May 26 2021

Formula

a(n) = n! * Sum_{k=1..n} k^(n-k-1) * (-1)^(k+1)/(n-k)!. - Vladimir Kruchinin, Sep 07 2010
a(n) = n - Sum_{k=1..n-1} binomial(n-1,k-1) * (n-k) * a(k). - Ilya Gutkovskiy, Jan 17 2020
Lim sup_{n->infinity} (abs(a(n))/n!)^(1/n) = 1/abs(LambertW(-1)) = 1/A238274. - Vaclav Kotesovec, May 26 2021

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Oct 22 2016

A305990 Expansion of e.g.f.: (1+x) / (exp(-x) - x).

Original entry on oeis.org

1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
    a={1};For[n=1,n<20,n++,AppendTo[a,Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!),{k,0,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)

Formula

a(n) ~ n! / LambertW(1)^(n+1).
a(n) = (-1)^n * A009444(n+1).
a(n) = Sum_{k=0..n+1} (n+1)!*(n-k+1)^(k-1)/k! for n > 0. - Detlef Meya, Sep 05 2023

A346753 Expansion of e.g.f. -log( 1 - x^2 * exp(x) / 2 ).

Original entry on oeis.org

0, 0, 1, 3, 9, 40, 225, 1491, 11578, 102852, 1026945, 11394955, 139091106, 1852061718, 26716291693, 415033647315, 6908006807640, 122645325067576, 2313546734841633, 46209268921868595, 974228913850588750, 21620679147700290210, 503810188866302511501
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[-Log[1 - x^2 Exp[x]/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 2] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = 0; a(n) = binomial(n,2) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,2) * k * a(k).
a(n) ~ (n-1)! / (2*LambertW(1/sqrt(2)))^n. - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=1..floor(n/2)} k^(n-2*k-1)/(2^k * (n-2*k)!). - Seiichi Manyama, Dec 14 2023

A346754 Expansion of e.g.f. -log( 1 - x^3 * exp(x) / 3! ).

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 30, 175, 1176, 7364, 50520, 425205, 4010380, 39433966, 414654604, 4793188855, 59834495280, 789420239560, 11016095913456, 163423065359529, 2565467553034740, 42320595474149650, 732058678770177220, 13275485607004016011
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - x^3 Exp[x]/3!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 3] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0; a(n) = binomial(n,3) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,3) * k * a(k).
a(n) ~ (n-1)! / (3*LambertW(2^(1/3)/3^(2/3)))^n. - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=1..floor(n/3)} k^(n-3*k-1)/(6^k * (n-3*k)!). - Seiichi Manyama, Dec 14 2023

A346755 Expansion of e.g.f. -log( 1 - x^4 * exp(x) / 4! ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 289245, 1892605, 16187171, 170721915, 1833783770, 18875258780, 196470797580, 2255939795436, 29179692064545, 401813199660285, 5612352516200815, 79620308330422475, 1182881543312932386
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 4] + (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 0; a(n) = binomial(n,4) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,4) * k * a(k).
a(n) ~ (n-1)! / (4*LambertW(3^(1/4)/2^(5/4)))^n. - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=1..floor(n/4)} k^(n-4*k-1)/(24^k * (n-4*k)!). - Seiichi Manyama, Dec 14 2023

A366459 Expansion of e.g.f. -log(1 - x^2 * exp(x)).

Original entry on oeis.org

0, 0, 2, 6, 24, 140, 990, 8442, 84056, 955656, 12227130, 173812430, 2717859012, 46362339036, 856770362630, 17050946225250, 363576478312560, 8269357341437072, 199837364514425586, 5113346326011170838, 138106722548779770620, 3926456810081828991780
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\2, k^(n-2*k-1)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/2)} k^(n-2*k-1)/(n-2*k)!.
a(n) ~ (n-1)! / (2^n *LambertW(1/2)^n). - Vaclav Kotesovec, Dec 29 2023

A228534 Triangular array read by rows: T(n,k) is the number of functional digraphs on {1,2,...,n} such that every element is mapped to a recurrent element and there are exactly k cycles, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 3, 1, 11, 9, 1, 58, 71, 18, 1, 409, 620, 245, 30, 1, 3606, 6274, 3255, 625, 45, 1, 38149, 73339, 45724, 11795, 1330, 63, 1, 470856, 977780, 697004, 221529, 33880, 2506, 84, 1, 6641793, 14678712, 11602394, 4309956, 823179, 82908, 4326, 108, 1
Offset: 1

Views

Author

Geoffrey Critzer, Aug 24 2013

Keywords

Comments

The Bell transform of (-1)^n*A009444(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			       1;
       3,      1;
      11,      9,      1;
      58,     71,     18,      1;
     409,    620,    245,     30,     1;
    3606,   6274,   3255,    625,    45,    1;
   38149,  73339,  45724,  11795,  1330,   63,  1;
  470856, 977780, 697004, 221529, 33880, 2506, 84, 1;
		

Crossrefs

Row sums = A006153.
Column 1 = |A009444|.
Cf. A199673.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    g := n -> add(m^(n-m)*m!*binomial(n+1,m), m=1..n+1);
    BellMatrix(g, 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    nn = 8; a = x Exp[x];
    Map[Select[#, # > 0 &] &,
      Drop[Range[0, nn]! CoefficientList[
         Series[1/(1 - a)^y, {x, 0, nn}], {x, y}], 1]] // Grid
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, (n+1)! Sum[m^(n-m)/(n-m+1)!, {m, 1, n+1}]], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428, A009444]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: (-1)^n*A009444(n+1), 10) # Peter Luschny, Jan 18 2016

Formula

E.g.f.: 1/(1 - x*exp(x))^y.

A275385 Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.

Original entry on oeis.org

1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0

Views

Author

Geoffrey Critzer, Jul 25 2016

Keywords

Comments

Equivalently, these are the functions counted by A116956 with the additional constraint that every element is mapped to a recurrent element. A recurrent element is an element on a cycle in the functional digraph.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
           (j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
        end:
    a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 25 2016
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
  • PARI
    default(seriesprecision, 30);
    S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
    v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016

Formula

E.g.f.: sqrt((1 + z*exp(z))/(1 - z*exp(z))).
Exponential transform of A216401.
a(n) ~ 2 * n^n / (sqrt(1+LambertW(1)) * LambertW(1)^n * exp(n)). - Vaclav Kotesovec, Jun 26 2022

A307125 Expansion of e.g.f. log(1 - log(1 - x*exp(x))).

Original entry on oeis.org

0, 1, 2, 4, 17, 123, 1052, 10568, 125750, 1726189, 26730394, 460982300, 8766443952, 182229703043, 4110207945794, 99970680376908, 2608221938476016, 72656914458625593, 2152355976206481570, 67562405794276542004, 2240111797037473955984, 78229640115171735522015, 2870092624821982184377202
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 26 2019

Keywords

Crossrefs

Programs

  • Maple
    a:=series(log(1-log(1-x*exp(x))),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 - Log[1 - x Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(x = 'x + O('x^30)); concat(0, Vec(serlaplace(log(1 - log(1 - x*exp(x)))))) \\ Michel Marcus, Mar 26 2019

A366546 Expansion of e.g.f. -log(1 - x^3 * exp(x)).

Original entry on oeis.org

0, 0, 0, 6, 24, 60, 480, 5250, 40656, 363384, 4839120, 65198430, 859543080, 13311494196, 233478687624, 4190929145130, 79746180437280, 1667320408619760, 36965002127643936, 854734007793179574, 20962277675893792440, 544839141515795731500
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\3, k^(n-3*k-1)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/3)} k^(n-3*k-1)/(n-3*k)!.
Showing 1-10 of 12 results. Next