cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A302397 Expansion of e.g.f. 1/(1 + x*exp(x)).

Original entry on oeis.org

1, -1, 0, 3, -4, -25, 114, 287, -4152, 1647, 192230, -807961, -10164804, 111209111, 454840554, -14657978385, 21202175504, 1988791958879, -15488971798194, -260886468394153, 4872247004699460, 23537372210149959, -1365745577227898350, 4274609859520565663, 364461939727273277016
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2018

Keywords

Examples

			1/(1 + x*exp(x)) = 1 - x/1! + 3*x^3/3! - 4*x^4/4! - 25*x^5/5! + 114*x^6/6! + 287*x^7/7! - 4152*x^8/8! + 1647*x^9/9! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1+x*exp(x)),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 + x Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(-1)^(n - k) (n - k)^k/k!, {k, 0, n}], {n, 24}]]
    Join[{1}, Table[Sum[(-1)^k k! k^(n - k) Binomial[n, k], {k, 0, n}], {n, 24}]]

Formula

E.g.f.: 1/(1 + x*exp(x)).
a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n-k)^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*k^(n-k)*binomial(n,k).

A009444 E.g.f. log(1 + x*exp(-x)).

Original entry on oeis.org

0, 1, -3, 11, -58, 409, -3606, 38149, -470856, 6641793, -105398650, 1858413061, -36044759796, 762659322385, -17481598316742, 431535346662645, -11413394655983536, 321989729198400385, -9651573930139850610
Offset: 0

Views

Author

Keywords

Comments

abs(a(n)) is the number of connected functions f:{1,2,...,n}->{1,2,...,n} such that every element is mapped into a recurrent element. Cf. A006153. - Geoffrey Critzer, May 24 2012

Crossrefs

Programs

  • Mathematica
    With[{nmax = 40}, CoefficientList[Series[Log[1 + x*Exp[-x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 22 2017 *)
  • Maxima
    a(n):=(-1)^(n+1)*n!*sum(m^(n-m-1)/(n-m)!,m,1,n); /* Vladimir Kruchinin, Oct 08 2011 */
    
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=1/(1+x/exp(x)); /* = 1 - x + 2*x^2 - 7/2*x^3 + 37/6*x^4 - 87/8*x^5 +... */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
    
  • Sage
    A009444 = lambda n: (-1)^(n+1)*factorial(n)*sum(m^(n-m-1)/factorial(n-m) for m in (1..n))
    [A009444(n) for n in (0..9)] # Peter Luschny, Jan 18 2016

Formula

abs(a(n)) is asymptotic to (n-1)!/LambertW(1)^n. - Vladeta Jovovic, Jul 12 2007
Sequence of absolute values has e.g.f. log(1/(1-x*exp(x))). - Joerg Arndt, Apr 30 2011
a(n) = (-1)^(n+1)*n!*sum(m=1..n, m^(n-m-1)/(n-m)!). - Vladimir Kruchinin, Oct 08 2011
a(n) = (-1)^(n + 1) * n + Sum_{k=1..n-1} (-1)^(n - k) * binomial(n-1,k-1) * (n - k) * a(k). - Ilya Gutkovskiy, Jan 17 2020

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, Apr 30 2011

A238274 Decimal expansion of abs(LambertW(-1)).

Original entry on oeis.org

1, 3, 7, 4, 5, 5, 7, 0, 1, 0, 7, 4, 3, 7, 0, 7, 4, 8, 6, 5, 3, 0, 0, 9, 3, 0, 5, 6, 7, 6, 9, 6, 6, 2, 6, 7, 2, 3, 4, 4, 2, 9, 7, 6, 3, 6, 5, 3, 7, 6, 2, 6, 5, 0, 0, 1, 0, 9, 6, 5, 7, 1, 0, 6, 3, 2, 4, 2, 1, 6, 6, 9, 5, 6, 5, 6, 4, 8, 7, 1, 5, 1, 7, 1, 3, 8, 3, 6, 7, 0, 0, 6, 4, 1, 9, 6, 4, 9, 4, 0, 0, 6, 8, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2014

Keywords

Examples

			1.37455701074370748653...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Abs[LambertW[-1]], 105]][[1]]

A305990 Expansion of e.g.f.: (1+x) / (exp(-x) - x).

Original entry on oeis.org

1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
    a={1};For[n=1,n<20,n++,AppendTo[a,Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!),{k,0,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)

Formula

a(n) ~ n! / LambertW(1)^(n+1).
a(n) = (-1)^n * A009444(n+1).
a(n) = Sum_{k=0..n+1} (n+1)!*(n-k+1)^(k-1)/k! for n > 0. - Detlef Meya, Sep 05 2023

A300452 Logarithmic transform of the cubes A000578.

Original entry on oeis.org

0, 1, 7, 5, -146, -351, 9936, 51421, -1394000, -12844287, 328407400, 4874111901, -115361217696, -2607873466511, 55768370301112, 1866984952934445, -34886452149332864, -1720211491314549375, 26716801597874981064, 1979492625918149729437, -23490293022369696366560, -2777285149336544358953679
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			E.g.f.: A(x) = x/1! + 7*x^2/2! + 5*x^3/3! - 146*x^4/4! - 351*x^5/5! + 9936*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
          binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i^3)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Log[1 + Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: log(1 + exp(x)*x*(1 + 3*x + x^2)).

A346750 Expansion of e.g.f. log( 1 + x^2 * exp(x) / 2 ).

Original entry on oeis.org

0, 0, 1, 3, 3, -20, -135, -189, 3598, 33300, 39105, -2164085, -23831214, -5268042, 3038813869, 36984819795, -59749871880, -8207734934984, -105142191601887, 482549202944307, 37754304692254030, 489494512692093090, -4466445363328684659, -271973408844483808517
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + x^2 Exp[x]/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 2] - (1/n) Sum[Binomial[n, k] Binomial[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0; a(n) = binomial(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,2) * k * a(k).
a(n) = n! * Sum_{k=1..floor(n/2)} (-1)^(k-1) * k^(n-2*k-1)/(2^k * (n-2*k)!). - Seiichi Manyama, Dec 14 2023

A346751 Expansion of e.g.f. log( 1 + x^3 * exp(x) / 3! ).

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 10, -105, -1064, -6076, -16680, 129525, 2642860, 25431406, 130210444, -639438345, -26431524560, -382074099000, -3083015556624, 5641134587049, 726952330301940, 14940678486798610, 173111303303845060, 258953439321230731, -43858702741534022936
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + x^3 Exp[x]/3!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 3] - (1/n) Sum[Binomial[n, k] Binomial[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 0; a(n) = binomial(n,3) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,3) * k * a(k).
a(n) = n! * Sum_{k=1..floor(n/3)} (-1)^(k-1) * k^(n-3*k-1)/(6^k * (n-3*k)!). - Seiichi Manyama, Dec 14 2023

A346752 Expansion of e.g.f. log( 1 + x^4 * exp(x) / 4! ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 35, -504, -6090, -45870, -265155, -990275, 2733731, 113064315, 1571621870, 15859846380, 116145112140, 289646855916, -9965576133855, -255337210989315, -4024508801328785, -47031887951290165, -338016913616223534, 1717029492398463650
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Log[1 + x^4 Exp[x]/4!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 4] - (1/n) Sum[Binomial[n, k] Binomial[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 25}]

Formula

a(0) = 0; a(n) = binomial(n,4) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,4) * k * a(k).
a(n) = n! * Sum_{k=1..floor(n/4)} (-1)^(k-1) * k^(n-4*k-1)/(24^k * (n-4*k)!). - Seiichi Manyama, Dec 14 2023

A300455 Logarithmic transform of the triangular numbers A000217.

Original entry on oeis.org

0, 1, 2, -1, -11, 19, 201, -764, -7426, 52137, 448435, -5377604, -38712486, 777663613, 4258812299, -149524753650, -505685566184, 36733876797025, 30910872539763, -11174584391207360, 25170998506744790, 4101787001153848461, -24862093152821214653, -1776483826032814964966
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! - x^3/3! - 11*x^4/4! + 19*x^5/5! + 201*x^6/6! - 764*x^7/7! - 7426*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
          binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i*(i+1)/2)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + Exp[x] x (x + 2)/2], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: log(1 + exp(x)*x*(x + 2)/2).

A320939 a(n) = n! * [x^n] log(1 + Sum_{k>=1} k^n*x^k/k!).

Original entry on oeis.org

0, 1, 3, 5, -650, -46071, 3121776, 5538166381, 3146076001776, -10459815889305231, -100694615309371571840, -193538025548431984737219, 38912028315765820944424730112, 2554132880645627969533690819801657, -106074951996903194289368162206783509504
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 28 2018

Keywords

Comments

a(n) is the n-th term of the logarithmic transform of the n-th powers.

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*log(1+add(k^n*x^k/factorial(k),k=1..n)),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[n! SeriesCoefficient[Log[1 + Sum[k^n x^k/k!, {k, 1, n}]], {x, 0, n}], {n, 0, 14}]
Showing 1-10 of 18 results. Next