cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A030178 Decimal expansion of LambertW(1): the solution to x*exp(x) = 1.

Original entry on oeis.org

5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, 2, 5, 0, 8, 1, 3, 5, 1, 3, 1, 0, 7, 9, 2, 2, 3, 0, 4, 5, 7, 9, 3, 0, 8, 6, 6, 8, 4, 5, 6, 6, 6, 9, 3, 2, 1, 9, 4, 4, 6, 9, 6, 1, 7, 5, 2, 2, 9, 4, 5, 5, 7, 6, 3, 8
Offset: 0

Views

Author

Keywords

Comments

Sometimes called the Omega constant.
Infinite power tower for c = 1/E, i.e., c^c^c^..., where c = 1/A068985. - Stanislav Sykora, Nov 03 2013
Notice the narrow interval exp(-gamma) < w(1) < gamma, with gamma = A001620. - Jean-François Alcover, Dec 18 2013
Also the solution to x = -log(x). - Robert G. Wilson v, Feb 22 2014

Examples

			0.5671432904097838729999686622103555497538157871865125081351310792230457930866...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A276759 (another fixed point of -exp(z)).

Programs

Formula

Equals 1/A030797.
Equals (1/Pi) * Integral_{x=0..Pi} log(1 + sin(x)*exp(x*cot(x))/x) dx (Mező, 2020). - Amiram Eldar, Jul 04 2021

A009306 Expansion of e.g.f.: log(1 + exp(x)*x).

Original entry on oeis.org

0, 1, 1, -1, -2, 9, 6, -155, 232, 3969, -20870, -118779, 1655028, 1610257, -143697722, 522358005, 13332842416, -138189937791, -1128293525646, 29219838555781, 17274118159180, -5993074252801839, 38541972209299966, 1179892974640047669
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009444.

Programs

  • Maple
    a:= n-> n! *add(k^(n-k-1) *(-1)^(k+1) /(n-k)!, k=1..n):
    seq(a(n), n=0..25);
  • Mathematica
    With[{nn=30},CoefficientList[Series[Log[1+Exp[x]x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 22 2016 *)
  • PARI
    seq(n)=Vec(serlaplace(log(1 + exp(x + O(x^n))*x)), -(n+1)) \\ Andrew Howroyd, May 26 2021

Formula

a(n) = n! * Sum_{k=1..n} k^(n-k-1) * (-1)^(k+1)/(n-k)!. - Vladimir Kruchinin, Sep 07 2010
a(n) = n - Sum_{k=1..n-1} binomial(n-1,k-1) * (n-k) * a(k). - Ilya Gutkovskiy, Jan 17 2020
Lim sup_{n->infinity} (abs(a(n))/n!)^(1/n) = 1/abs(LambertW(-1)) = 1/A238274. - Vaclav Kotesovec, May 26 2021

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Oct 22 2016

A276759 Decimal expansion of the real part of the fixed point of -exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

1, 5, 3, 3, 9, 1, 3, 3, 1, 9, 7, 9, 3, 5, 7, 4, 5, 0, 7, 9, 1, 9, 7, 4, 1, 0, 8, 2, 0, 7, 2, 7, 3, 3, 7, 7, 9, 7, 8, 5, 2, 9, 8, 6, 1, 0, 6, 5, 0, 7, 6, 6, 6, 7, 1, 7, 3, 3, 0, 7, 6, 0, 0, 5, 6, 8, 9, 4, 4, 9, 0, 8, 1, 1, 0, 0, 4, 3, 9, 2, 4, 4, 9, 9, 0, 6, 1, 0, 5, 6, 5, 5, 3, 4, 6, 3, 7, 0, 9, 6, 2, 0, 7, 1, 0
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

The negated exponential mapping -exp(z) has in C a denumerable set of fixed points z_k with even k, which are the solutions of exp(z)+z = 0. The solutions with positive and negative indices k form mutually conjugate pairs, such as this z_2 and z_-2. A similar situation arises also for the fixed points of the mapping +exp(z). My link explains why is it convenient to use even indices for the fixed points of -exp(z) and odd ones for those of +exp(z). Setting K = sign(k)*floor(|k|/2), an even-indexed z_k is also a solution of z = log(-z)+2*Pi*K*i. Moreover, an even-indexed z_k equals -W_L(1), where W_L is the L-th branch of the Lambert W function, with L=-floor((k+1)/2). For any nonzero K, the mapping M_K(z) = log(-z)+2*Pi*K*i has the even-indexed z_k as its unique attractor, convergent from any nonzero point in C (the case K=0 is an exception, discussed in my linked document).
The value listed here is the real part of z_2 = a + i*A276760.

Examples

			1.533913319793574507919741082072733779785298610650766671733076...
		

Crossrefs

Fixed points of -exp(z): z_0: A030178 (real-valued), and z_2: A276760 (imaginary part), A276761 (modulus).
Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681, A277682, A277683.

Programs

  • Mathematica
    RealDigits[Re[-ProductLog[-1, 1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(-z)+2*Pi*K*I; \\ the convergent mapping (any K!=0)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				

Formula

Let z_2 = A276759+i*A276760. Then z_2 = -exp(z_2) = log(-z_2)+2*Pi*i = -W_-1(1).

A277681 Decimal expansion of the real part of the fixed point of exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

2, 0, 6, 2, 2, 7, 7, 7, 2, 9, 5, 9, 8, 2, 8, 3, 8, 8, 4, 9, 7, 8, 4, 8, 6, 7, 2, 0, 0, 0, 8, 0, 4, 5, 9, 5, 1, 2, 8, 3, 5, 9, 2, 3, 0, 6, 7, 0, 4, 5, 9, 1, 6, 1, 3, 1, 0, 0, 9, 8, 4, 2, 0, 0, 0, 0, 4, 9, 4, 9, 8, 8, 0, 5, 3, 4, 8, 5, 2, 9, 5, 4, 7, 3, 7, 8, 9, 2, 4, 9, 9, 0, 0, 4, 2, 5, 3, 8, 6, 3, 3, 6, 1, 6, 8
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

The exponential mapping exp(z) has in C a denumerable set of fixed points z_k with odd k, which are the solutions of exp(z) = z. The solutions with positive and negative indices k form mutually conjugate pairs, such as z_3 and z_-3. A similar situation arises also for the related fixed points of the mapping -exp(z). My link explains why is it convenient to use odd indices for the fixed points of +exp(z) and even indices for those of -exp(z). Setting K = sign(k)*floor(|k|/2), an odd-indexed z_k is also a fixed point of the logarithmic function in its K-th branch, i.e., a solution of z = log(z)+2*Pi*K*i. Moreover, an odd-indexed z_k equals -W_L(-1), where W_L is the L-th branch of the Lambert W function, with L = -floor((k+1)/2). For any K, the mapping M_K(z) = log(z)+2*Pi*K*i has z_k as its unique attractor, convergent from any nonzero point in C (an exception occurs for K=0, for which M_0(z) has two attractors, z_1 and z_-1, as described in my linked document).
The value listed here is the real part of z_3 = a + i*A277682.

Examples

			2.062277729598283884978486720008045951283592306704591613100984...
		

Crossrefs

Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277682 (imaginary part), A277683 (modulus).
Fixed points of -exp(z): z_0: A030178, and z_2: A276759, A276760, A276761.

Programs

  • Mathematica
    RealDigits[Re[-ProductLog[-2, -1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				

Formula

Let z_3 = A277681+i*A277682. Then z_3 = exp(z_3) = log(z_3)+2*Pi*i = -W_-2(-1).

A177380 E.g.f. satisfies: A(x) = 1+x + x*log(A(x)).

Original entry on oeis.org

1, 1, 2, 3, -4, -50, -36, 2058, 10800, -131616, -1975680, 7741800, 417480480, 1307617584, -101626746144, -1284067345680, 25419094122240, 791333924647680, -3900043588999680, -472446912421801728, -3183064994777932800
Offset: 0

Views

Author

Paul D. Hanna, May 14 2010

Keywords

Comments

The signs have a complex structure; are they periodic after some point?

Examples

			E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +...
log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +...
...
Coefficients in the initial powers of A(x) begin:
[1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...];
[1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...];
[1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...];
[1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...];
[1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...];
[1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...];
[1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...];
[1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ...
where the coefficients in parenthesis illustrate the property
that the coefficients of x^n and x^(n+1) in A(x)^n are equal:
[x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!,
where G(x) = e.g.f. of A138013 begins:
G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...
and satisfies: exp(1 - G(x)) = 1 - x*G(x).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 11 2014 *)
  • PARI
    {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x+x*log(A+O(x^n)));n!*polcoeff(A,n)}

Formula

E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ).
...
Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy:
(1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1;
(2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x));
(3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x.
...
Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy:
(4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0;
(5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x);
(6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))).
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - Vaclav Kotesovec, Jan 11 2014

A185221 E.g.f. is solution to y = 1 + log(1 + x*y) in powers of x.

Original entry on oeis.org

1, 1, 1, -1, -10, -6, 294, 1350, -14624, -197568, 703800, 34790040, 100585968, -7259053296, -85604489712, 1588693382640, 46549054391040, -216669088277760, -24865626969568512, -159153249738896640, 13379663931502199040
Offset: 0

Views

Author

Michael Somos, Jan 24 2012

Keywords

Examples

			y = 1 + x + 1/2*x^2 - 1/6*x^3 - 5/12*x^4 - 1/20*x^5 + 49/120*x^6 + 15/56*x^7 + ...
		

Crossrefs

Programs

  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n+k+1,n) * sum((-1)^(j) * binomial(k+1,j) * sum((-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i), i,1,n), j,1,k+1), k,0,n) / (n+1); /* Vladimir Kruchinin, Mar 29 2013 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 + log(1 + x * A)); n! * polcoeff( A, n))}
    

Formula

E.g.f. is solution to y = y' * (1 - x + x*y).
a(n) = sum(k=0..n, binomial(n+k+1,n) * sum(j=1..k+1, (-1)^(j) * binomial(k+1,j) * sum(i=1..n, (-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i)))) / (n+1), n>0, a(0)=1. [Vladimir Kruchinin, Mar 29 2013]
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.37455701074370748653... (see A238274). - Vaclav Kotesovec, Feb 24 2014
a(n) = n! * Sum_{k=0..n} Stirling1(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2023

A276760 Decimal expansion of the imaginary part of the fixed point of -exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

4, 3, 7, 5, 1, 8, 5, 1, 5, 3, 0, 6, 1, 8, 9, 8, 3, 8, 5, 4, 7, 0, 9, 0, 6, 5, 6, 4, 8, 5, 2, 5, 8, 4, 2, 9, 1, 6, 2, 3, 8, 2, 3, 1, 1, 4, 6, 7, 7, 0, 1, 1, 8, 6, 4, 9, 6, 1, 0, 4, 4, 4, 9, 1, 8, 0, 3, 7, 2, 1, 5, 6, 3, 0, 8, 9, 3, 4, 7, 2, 8, 1, 7, 5, 9, 8, 8, 1, 8, 2, 3, 9, 9, 0, 9, 5, 9, 5, 1, 4, 1, 7, 9, 7, 8
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

Imaginary part of the complex constant z_2 whose real part is in A276759 (see the latter entry for more information).

Examples

			4.375185153061898385470906564852584291623823114677011864961044...
		

Crossrefs

Fixed points of -exp(z): z_0: A030178, and z_2: A276759 (real part), A276761 (modulus).
Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681, A277682, A277683.

Programs

  • Mathematica
    RealDigits[Im[-ProductLog[-1, 1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(-z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				

Formula

Let z_2 = A276759+i*A276760. Then z_2 = -exp(z_2) = log(-z_2)+2*Pi*i = -W_-1(1).

A276761 Decimal expansion of the modulus of the fixed point of -exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

4, 6, 3, 6, 2, 8, 4, 6, 3, 2, 7, 8, 6, 6, 2, 5, 1, 8, 9, 5, 4, 4, 9, 5, 2, 3, 1, 8, 0, 3, 4, 2, 0, 5, 3, 8, 7, 0, 4, 4, 6, 9, 9, 3, 5, 5, 6, 7, 7, 5, 7, 5, 2, 5, 2, 9, 6, 3, 9, 3, 5, 1, 0, 1, 9, 3, 0, 2, 5, 4, 4, 9, 3, 1, 0, 4, 5, 0, 9, 4, 5, 2, 4, 9, 4, 6, 6, 2, 2, 6, 1, 9, 3, 7, 3, 2, 8, 7, 8, 3, 9, 2, 7, 5, 4
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

Modulus of z_2 = A276759+i*A276760. See A276759 for more information.

Examples

			4.636284632786625189544952318034205387044699355677575252963935...
		

Crossrefs

Fixed points of -exp(z): z_0: A030178, and z_2: A276759 (real part), A276760 (imaginary part).
Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681, A277682, A277683.

Programs

  • Mathematica
    RealDigits[Norm[ProductLog[1, 1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(-z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				

A277682 Decimal expansion of the imaginary part of the fixed point of exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

7, 5, 8, 8, 6, 3, 1, 1, 7, 8, 4, 7, 2, 5, 1, 2, 6, 2, 2, 5, 6, 8, 9, 2, 3, 9, 5, 4, 1, 0, 7, 5, 8, 4, 3, 8, 3, 0, 1, 3, 4, 7, 3, 6, 7, 1, 9, 9, 2, 8, 5, 6, 3, 6, 0, 4, 0, 9, 4, 3, 7, 4, 3, 7, 3, 6, 4, 3, 2, 2, 7, 5, 6, 0, 2, 3, 4, 0, 4, 8, 7, 2, 5, 0, 4, 7, 3, 3, 2, 7, 1, 5, 4, 7, 0, 5, 0, 1, 9, 3, 0, 5, 0, 7, 3
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

Imaginary part of the complex constant z_3 whose real part is in A277681 (see the latter entry for more information).

Examples

			7.588631178472512622568923954107584383013473671992856360409437...
		

Crossrefs

Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681 (real part), A277683 (modulus).
Fixed points of -exp(z): z_0: A030178, and z_2: A276759, A276760, A276761.

Programs

  • Mathematica
    RealDigits[Im[ProductLog[1, -1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				

Formula

Let z_3 = A277681+i*A277682. Then z_3 = exp(z_3) = log(z_3)+2*Pi*i = -W_-2(-1).

A277683 Decimal expansion of the modulus of the fixed point of exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

7, 8, 6, 3, 8, 6, 1, 1, 7, 6, 0, 9, 4, 2, 3, 2, 6, 6, 8, 8, 4, 2, 5, 7, 3, 6, 2, 3, 4, 8, 7, 3, 8, 2, 3, 2, 1, 4, 6, 8, 3, 2, 0, 2, 0, 7, 7, 7, 9, 8, 9, 3, 4, 6, 0, 2, 9, 4, 1, 4, 4, 5, 3, 0, 5, 7, 4, 5, 8, 5, 9, 2, 4, 3, 3, 2, 5, 2, 0, 4, 5, 8, 8, 8, 0, 1, 1, 0, 4, 5, 8, 7, 4, 9, 0, 6, 6, 4, 4, 6, 4, 0, 3, 8, 1
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

Modulus of z_3 = A277681 + i*A277682. See A277681 for more information.

Examples

			7.863861176094232668842573623487382321468320207779893460294144...
		

Crossrefs

Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681 (real part), A277682 (imaginary part).
Fixed points of -exp(z): z_0: A030178, and z_2: A276759, A276760, A276761.

Programs

  • Mathematica
    RealDigits[Norm[ProductLog[1, -1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)
    				
Showing 1-10 of 10 results.