cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A299614 Decimal expansion of e^(2*A030178) = e^(2*W(1)) = (1/W(1))^2, where W is the Lambert W function (or PowerLog); see Comments.

Original entry on oeis.org

3, 1, 0, 8, 9, 5, 4, 7, 6, 3, 5, 7, 9, 9, 3, 6, 1, 8, 5, 4, 8, 0, 9, 4, 5, 4, 0, 5, 4, 2, 4, 5, 6, 9, 3, 0, 7, 8, 5, 0, 1, 5, 8, 1, 2, 1, 5, 7, 4, 0, 8, 0, 7, 7, 1, 5, 5, 1, 0, 9, 7, 0, 4, 4, 2, 6, 5, 0, 1, 6, 1, 5, 4, 9, 3, 5, 9, 0, 1, 3, 3, 8, 7, 9, 6, 5
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2018

Keywords

Comments

The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(1)) = (W(1))^(-2). See A299613 for a guide to related constants.

Examples

			e^(2*W(1)) = 3.1089547635799361854809454054...
		

Crossrefs

Cf. A299613.

Programs

  • Mathematica
    w[x_] := ProductLog[x]; x = 1; y = 1;
    N[E^(w[x] + w[y]), 130]   (* A299614 *)
    RealDigits[(1/LambertW[1])^2, 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)
  • PARI
    (1/lambertw(1))^2 \\ G. C. Greubel, Mar 03 2018

A370490 The denominators of a series that converges to the Omega constant (A030178) obtained using Whittaker's root series formula.

Original entry on oeis.org

2, 14, 259, 9657, 200187, 18671081, 7313976065, 1273374259615, 285038137030769, 79755360301275363, 9091712937155442435, 149243024021521700285, 1085736156475373087072485, 3071709182054627484879798019, 2005459027715242401528647218817, 1496371535371115486607560677791759
Offset: 1

Views

Author

Raul Prisacariu, Feb 19 2024

Keywords

Comments

Whittaker's root series formula is applied to 1 - 2x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - ..., which is the Taylor expansion of -x + e^(-x). We obtain the following infinite series that converges to the Omega constant (LambertW(1)): LambertW(1) = 1/2 + 1/14 - 1/259 - 5/9657 + 19/200187 - 3/18671081 ... . The sequence is formed by the denominators of the infinite series.

Examples

			a(1) is the denominator of -1/-2 = 1/2.
a(2) is the denominator of -(1/2)/((-2)*det ToeplitzMatrix((-2,1),(-2,1/2!))) = -(1/2)/((-2)*(7/2)) = 1/14.
a(3) is the denominator of -det ToeplitzMatrix((1/2!,-2),(1/2!,-1/3!))/(det ToeplitzMatrix((-2,1),(-2,1/2!))*det ToeplitzMatrix((-2,1,0),(-2,1/2!,-1/3!))) = -(-1/12)/((7/2)*(-37/6)) = -1/259.
		

Crossrefs

Cf. A030178, A370491 (numerator).

Formula

for n>1, a(n) is the denominator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n-1)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))), where c(0)=1, c(1)=-2, c(n) = (-1)^n/n!.

Extensions

a(9)-a(16) from Chai Wah Wu, Mar 23 2024

A370491 The numerators of a series that converges to the Omega constant (A030178) obtained using Whittaker's root series formula.

Original entry on oeis.org

1, 1, -1, -5, 19, -3, -10187, 146847, 3268961, -211632497, 393324007, 5402916117, -3884618921299, -774402304798329, 148294948981707557, -3311395903665985169, -43463254022673425965, 14469962812566878696039, 6554498075974546253080309, -3074689522272735111427973673
Offset: 1

Views

Author

Raul Prisacariu, Feb 19 2024

Keywords

Comments

Whittaker's root series formula is applied to 1 - 2x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - ..., which is the Taylor expansion of -x + e^(-x). We obtain the following infinite series that converges to the Omega constant (LambertW(1)): LambertW(1) = 1/2 + 1/14 - 1/259 - 5/9657 + 19/200187 - 3/18671081 ... . The sequence is formed by the numerators of the infinite series.

Examples

			a(1) is the numerator of -1/-2 = 1/2.
a(2) is the numerator of -(1/2)/((-2)*det ToeplitzMatrix((-2,1),(-2,1/2!))) = -(1/2)/((-2)*(7/2)) = 1/14.
a(3) is the numerator of -det ToeplitzMatrix((1/2!,-2),(1/2!,-1/3!))/(det ToeplitzMatrix((-2,1),(-2,1/2!))*det ToeplitzMatrix((-2,1,0),(-2,1/2!,-1/3!))) = -(-1/12)/((7/2)*(-37/6)) = -1/259.
		

Crossrefs

Cf. A030178, A370490 (denominator).

Formula

For n > 1, a(n) is the numerator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n-1)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))), where c(0)=1, c(1)=-2, c(n) = (-1)^n/n!.

Extensions

a(9)-a(20) from Chai Wah Wu, Mar 23 2024

A073226 Decimal expansion of e^e.

Original entry on oeis.org

1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

Given z > 0, there exist positive real numbers x < y, with x^y = y^x = z, if and only if z > e^e. In that case, 1 < x < e < y and (x, y) = ((1 + 1/t)^t, (1 + 1/t)^(t+1)) for some t > 0. (For example, t = 1 gives 2^4 = 4^2 = 16 > e^e.) Proofs of these classical results and applications of them are in Marques and Sondow (2010).
e^e = lim_{n->infinity} ((n+1)/n)^((n+1)^(n+1)/n^n), n > 0 an integer; cf. [Vernescu] wherein it is also stated that the assertions of the previous comment above were proved by Alexandru Lupas in 2006. - L. Edson Jeffery, Sep 18 2012
A weak form of Schanuel's Conjecture implies that e^e is transcendental--see Marques and Sondow (2012).

Examples

			15.15426224147926418976043027262991190552854853685613976914...
		

Crossrefs

Cf. A073233 (Pi^Pi), A049006 (i^i), A001113 (e), A073227 (e^e^e), A004002 (Benford numbers), A056072 (floor(e^e^...^e), n e's), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073229 (e^(1/e)), A073230 ((1/e)^e).

Programs

  • Magma
    Exp(Exp(1)); // G. C. Greubel, May 29 2018
  • Mathematica
    RealDigits[ E^E, 10, 110] [[1]]
  • PARI
    exp(exp(1))
    
  • PARI
    { default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020

A072597 Expansion of 1/(exp(-x) - x) as exponential generating function.

Original entry on oeis.org

1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0

Views

Author

Michael Somos, Jun 23 2002

Keywords

Comments

Polynomials from A140749/A141412 are linked to Stirling1 (see A048594, A129841, A140749). See also P. Flajolet, X. Gourdon, B. Salvy in, available on Internet, RR-1857.pdf (preprint of unavailable Gazette des Mathematiciens 55, 1993, pp. 67-78; for graph 2 see also X. Gourdon RR-1852.pdf, pp. 64-65). What is the corresponding graph for A152650/A152656 = simplified A009998/A119502 linked, via A152818, to a(n), then Stirling2? - Paul Curtz, Dec 16 2008
Denominators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." Numerators in A006153. - Michael Somos, Jan 21 2019
Call an element g in a semigroup a group element if g^j = g for some j > 1. Then a(n) is the number of group elements in the semigroup of partial transformations of an n-set. Hence a(n) = Sum_{k=0..n} A154372(n,k)*k!. - Geoffrey Critzer, Nov 27 2021

Examples

			G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
		

References

  • O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
    a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */

Formula

E.g.f.: 1 / (exp(-x) - x).
a(n) = n!*Sum_{k=0..n} (n-k+1)^k/k!. - Vladeta Jovovic, Aug 31 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A052820(k). - Vladeta Jovovic, Apr 12 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} binomial(n, j)*a(j)*j. - Jon Perry, Apr 25 2005
E.g.f.: 1/(Q(0) - x) where Q(k) = 1 - x/(2*k+1 - x*(2*k+1)/(x - (2*k+2)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 04 2013
a(n) ~ n!/((1+c)*c^(n+1)), where c = A030178 = LambertW(1) = 0.5671432904... - Vaclav Kotesovec, Jun 26 2013
O.g.f.: Sum_{k>=0} k!*x^k/(1 - (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) = A006153(n+1)/(n+1). - Seiichi Manyama, Nov 05 2024

A299613 Decimal expansion of 2*W(1), where W is the Lambert W function (or PowerLog); see Comments.

Original entry on oeis.org

1, 1, 3, 4, 2, 8, 6, 5, 8, 0, 8, 1, 9, 5, 6, 7, 7, 4, 5, 9, 9, 9, 9, 3, 7, 3, 2, 4, 4, 2, 0, 7, 1, 1, 0, 9, 9, 5, 0, 7, 6, 3, 1, 5, 7, 4, 3, 7, 3, 0, 2, 5, 0, 1, 6, 2, 7, 0, 2, 6, 2, 1, 5, 8, 4, 4, 6, 0, 9, 1, 5, 8, 6, 1, 7, 3, 3, 6, 9, 1, 3, 3, 3, 8, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2018

Keywords

Comments

The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)).
Guide to related constants:
--------------------------------------------
x y W(x) + W(y) e^(W(x) + W(y))
--------------------------------------------
e e 2 exactly e^2 exactly

Examples

			2*W(1) = 1.13428658081956774599993...
		

Crossrefs

Programs

  • Mathematica
    w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100]
    RealDigits[u, 10][[1]]  (* A299613 *)
    RealDigits[2 ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, Mar 02 2018 *)
  • PARI
    2*lambertw(1) \\ G. C. Greubel, Mar 07 2018

Formula

Equals 2*A030178.

A030797 Decimal expansion of the constant x such that x^x = e. Inverse of W(1), where W is Lambert's function.

Original entry on oeis.org

1, 7, 6, 3, 2, 2, 2, 8, 3, 4, 3, 5, 1, 8, 9, 6, 7, 1, 0, 2, 2, 5, 2, 0, 1, 7, 7, 6, 9, 5, 1, 7, 0, 7, 0, 8, 0, 4, 3, 6, 0, 1, 7, 9, 8, 6, 6, 6, 7, 4, 7, 3, 6, 3, 4, 5, 7, 0, 4, 5, 6, 9, 0, 5, 5, 4, 7, 2, 7, 5, 8, 4, 7, 1, 8, 6, 9, 9, 5, 7, 3, 6, 7, 8, 9, 0, 8, 3, 8, 9, 1, 0, 5, 0, 6, 8, 1, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Decimal expansion of the solution to y*log(y) = 1. - Benoit Cloitre, Mar 30 2002
Let u(n+1) = exp(1/u(n)) then for any u(1) which is nonzero and real (positive or negative), lim n -> infinity u(n) = 1.763222834.... - Benoit Cloitre, Aug 06 2002
Conjecture: Another series can be defined as follows. Let z = a + b*i <> 0 be complex, and let z = v^v. Then log(z) + v = v*(1 + log(v)), so f(z, v) = (log(z) + v)/(1 + log(v)) = v. Suppose lim_{n -> infinity} (log(z) + v(n))/(1 + Log(v(n))) = v, for some sequence {v(n)}. Then, since v(n) -> v(n+1), similarly f_(n+1)(z, v) = v(n+1) = (log(z) + v(n))/(1 + log(v(n))). If Im(z) <> 0, recall that log(z) is multi-valued, so one might take both log(z) and log(v(n)) modulo 2*Pi*i. If Im(z) = 0 (i.e., if z is real), then one should use the recurrence f_(n+1)(z, v) = v(n+1) = (log(z) + v(n))/(1 + abs(log(v(n)))). For example, when z = e, we have lim_{n -> infinity} (1 + v(n))/(1 + abs(log(v(n)))) = 1.763222..., for v(0) <> 1/e, with apparent quadratic convergence, and most rapidly when v(0) = 1. Pathologies occur when v(0) is in the vicinity of a fixed point of f(z, v); e.g., if z = 2^(1/4), then such a fixed point is c = 0.806693797003867301..., so f_(n)(z, v) -> c, for all n, with a(0) near c. The constant c was calculated to 250 digits by Joerg Arndt. - L. Edson Jeffery, Apr 12 2011

Examples

			1.763222834351896710225201776951707080436017986667473634570456905547275847...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.

Crossrefs

Programs

Formula

Equals 1/A030178.
Equals e^A030178. - Colin Linzer, Nov 20 2024
Equals sqrt(A299614) = A299617/e. - Hugo Pfoertner, Nov 20 2024

Extensions

Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009

A052820 Expansion of e.g.f. 1/(1 - x + log(1 - x)).

Original entry on oeis.org

1, 2, 9, 62, 572, 6604, 91526, 1480044, 27353448, 568731648, 13138994112, 333895239072, 9256507508112, 278000959058016, 8991458660924112, 311585506208924064, 11517363473843526912, 452332548042633835776
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
a(n) is the number of ways to seat n people at circular tables, then linearly order the tables, then designate some (possibly all or none) of the tables at which only one person is seated. a(2) = 9 because we have: (1)(2), (1')(2), (1)(2'), (1')(2'), (2)(1), (2')(1), (2)(1'), (2')(1'), (1,2). Cf. A007840. - Geoffrey Critzer, Nov 05 2013

Crossrefs

Programs

  • Maple
    spec := [S,{C=Cycle(Z),B=Union(C,Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1-x+Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)

Formula

E.g.f.: -1/(-1+x+log(-1/(-1+x))).
a(n) ~ n! * (1/(1-LambertW(1)))^n/(1/LambertW(1)-LambertW(1)). - Vaclav Kotesovec, Oct 01 2013
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k). - Ilya Gutkovskiy, Apr 26 2021

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 01 2013

A059526 Decimal expansion of real part of solution to z = log z.

Original entry on oeis.org

3, 1, 8, 1, 3, 1, 5, 0, 5, 2, 0, 4, 7, 6, 4, 1, 3, 5, 3, 1, 2, 6, 5, 4, 2, 5, 1, 5, 8, 7, 6, 6, 4, 5, 1, 7, 2, 0, 3, 5, 1, 7, 6, 1, 3, 8, 7, 1, 3, 9, 9, 8, 6, 6, 9, 2, 2, 3, 7, 8, 6, 0, 6, 2, 2, 9, 4, 1, 3, 8, 7, 1, 5, 5, 7, 6, 2, 6, 9, 7, 9, 2, 3, 2, 4, 8, 6, 3, 8, 4, 8, 9, 8, 6, 3, 6, 1, 6, 3, 8, 4, 4, 2, 1, 4
Offset: 0

Views

Author

Fabian Rothelius, Jan 21 2001

Keywords

Comments

Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.
A complex number w with a negative imaginary part will converge to the conjugate of z since log(conjugate(w)) = conjugate(log(w)). - Gerald McGarvey, Mar 02 2009
This z and its conjugate are the only two complex solutions of z=log(z) on the principal branch of log(z), and of exp(z)=z for |arg(z)| <= Pi. They are also the only nontrivial (z!=0) principal branch solutions of z=W(z^2), W being the Lambert W-function. Though the two values are iterative attractors of the mapping z->log(z), the convergence is rather slow; the precision improves by slightly more than one binary bit every 2.25 iterations (about 7500 iterations are needed to make stable the first 1000 decimal digits). - Stanislav Sykora, Jun 07 2015

Examples

			z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i
		

Crossrefs

Imaginary part is A059527.
Cf. A030178.
Cf: A277681 (another fixed point of exp(z)).

Programs

  • Mathematica
    RealDigits[ Re[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
    RealDigits[ N[ Re[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
    RealDigits[Re[x/.FindRoot[x-Log[x]==0,{x,.5,1},WorkingPrecision->200]],10,120][[1]] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    z=I;for(k=1,16000,z=log(z));real(z) \\ Stanislav Sykora, Jun 07 2015 \\ Using realprecision \p 2010
    
  • PARI
    z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); real(z) \\ Jeremy Tan, Sep 23 2017

Extensions

More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002

A059527 Decimal expansion of imaginary part of solution to z = log z.

Original entry on oeis.org

1, 3, 3, 7, 2, 3, 5, 7, 0, 1, 4, 3, 0, 6, 8, 9, 4, 0, 8, 9, 0, 1, 1, 6, 2, 1, 4, 3, 1, 9, 3, 7, 1, 0, 6, 1, 2, 5, 3, 9, 5, 0, 2, 1, 3, 8, 4, 6, 0, 5, 1, 2, 4, 1, 8, 8, 7, 6, 3, 1, 2, 7, 8, 1, 9, 1, 4, 3, 5, 0, 5, 3, 1, 3, 6, 1, 2, 0, 4, 9, 8, 8, 4, 1, 8, 8, 8, 1, 3, 2, 3, 4, 3, 8, 7, 9, 4, 0, 1, 5, 6, 1, 0, 3, 8
Offset: 1

Views

Author

Fabian Rothelius, Jan 21 2001

Keywords

Comments

Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.

Examples

			z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i.
		

Crossrefs

Real part is A059526.
Cf. A030178.

Programs

  • Mathematica
    RealDigits[ Im[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
    RealDigits[ N[ Im[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
  • PARI
    z=I;for(k=1,16000,z=log(z));imag(z)  \\ Using realprecision \p 2010. - Stanislav Sykora, Jun 07 2015
    
  • PARI
    z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); imag(z) \\ Jeremy Tan, Sep 23 2017

Extensions

More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002
Showing 1-10 of 52 results. Next