cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A238274 Decimal expansion of abs(LambertW(-1)).

Original entry on oeis.org

1, 3, 7, 4, 5, 5, 7, 0, 1, 0, 7, 4, 3, 7, 0, 7, 4, 8, 6, 5, 3, 0, 0, 9, 3, 0, 5, 6, 7, 6, 9, 6, 6, 2, 6, 7, 2, 3, 4, 4, 2, 9, 7, 6, 3, 6, 5, 3, 7, 6, 2, 6, 5, 0, 0, 1, 0, 9, 6, 5, 7, 1, 0, 6, 3, 2, 4, 2, 1, 6, 6, 9, 5, 6, 5, 6, 4, 8, 7, 1, 5, 1, 7, 1, 3, 8, 3, 6, 7, 0, 0, 6, 4, 1, 9, 6, 4, 9, 4, 0, 0, 6, 8, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2014

Keywords

Examples

			1.37455701074370748653...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Abs[LambertW[-1]], 105]][[1]]

A367078 E.g.f. satisfies A(x) = 1 + log(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 14, 82, 514, 2508, -12328, -820752, -22232232, -498433320, -9865850688, -159373484448, -1136343398880, 65056426313760, 4663237803223680, 210535052582008320, 7821007002377349120, 242387957802121971840, 5333182310844833642496
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (2*n)!*sum(k=0, n, stirling(n, k, 1)/(2*n-k+1)!);

Formula

a(n) = (2*n)! * Sum_{k=0..n} Stirling1(n,k)/(2*n-k+1)!.

A366729 E.g.f. satisfies A(x) = 1 + log(1 + x*A(x)^2)/A(x).

Original entry on oeis.org

1, 1, 1, -4, -36, 14, 3100, 22112, -374640, -9520320, 9674808, 4085208192, 55207595520, -1640647901088, -69445046214336, 103240707929088, 71686341699216384, 1439635203885275136, -60449514895261440000, -3608840044036879934976
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (2*n-k)!/(2*n-2*k+1)!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (2*n-k)!/(2*n-2*k+1)! * Stirling1(n,k).

A367079 E.g.f. satisfies A(x) = 1 + log(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 5, 47, 654, 12084, 278682, 7708056, 248678784, 9168447600, 380274659760, 17524760349216, 888364833282000, 49125202031205936, 2942774373267939168, 189829708902667840320, 13118899353628035596544, 966975804677206274688000
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Comments

a(131) is negative. - Vaclav Kotesovec, Nov 07 2023

Crossrefs

Programs

  • Mathematica
    Table[(3*n)! * Sum[StirlingS1[n,k]/(3*n-k+1)!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 07 2023 *)
  • PARI
    a(n) = (3*n)!*sum(k=0, n, stirling(n, k, 1)/(3*n-k+1)!);

Formula

a(n) = (3*n)! * Sum_{k=0..n} Stirling1(n,k)/(3*n-k+1)!.

A367179 E.g.f. satisfies A(x) = 1 + log(1 + x*A(x)^3)/A(x)^2.

Original entry on oeis.org

1, 1, 1, -7, -74, 14, 10736, 124032, -1695672, -81281688, -528840024, 47385631512, 1540148366736, -12438137705904, -2292918626509536, -48210827445848832, 2456594159904115200, 177787615056364279296, 782103240212585461632
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-2*k)!/(3*n-3*k+1)!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (3*n-2*k)!/(3*n-3*k+1)! * Stirling1(n,k).
Showing 1-5 of 5 results.