cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A238274 Decimal expansion of abs(LambertW(-1)).

Original entry on oeis.org

1, 3, 7, 4, 5, 5, 7, 0, 1, 0, 7, 4, 3, 7, 0, 7, 4, 8, 6, 5, 3, 0, 0, 9, 3, 0, 5, 6, 7, 6, 9, 6, 6, 2, 6, 7, 2, 3, 4, 4, 2, 9, 7, 6, 3, 6, 5, 3, 7, 6, 2, 6, 5, 0, 0, 1, 0, 9, 6, 5, 7, 1, 0, 6, 3, 2, 4, 2, 1, 6, 6, 9, 5, 6, 5, 6, 4, 8, 7, 1, 5, 1, 7, 1, 3, 8, 3, 6, 7, 0, 0, 6, 4, 1, 9, 6, 4, 9, 4, 0, 0, 6, 8, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2014

Keywords

Examples

			1.37455701074370748653...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Abs[LambertW[-1]], 105]][[1]]

A185221 E.g.f. is solution to y = 1 + log(1 + x*y) in powers of x.

Original entry on oeis.org

1, 1, 1, -1, -10, -6, 294, 1350, -14624, -197568, 703800, 34790040, 100585968, -7259053296, -85604489712, 1588693382640, 46549054391040, -216669088277760, -24865626969568512, -159153249738896640, 13379663931502199040
Offset: 0

Views

Author

Michael Somos, Jan 24 2012

Keywords

Examples

			y = 1 + x + 1/2*x^2 - 1/6*x^3 - 5/12*x^4 - 1/20*x^5 + 49/120*x^6 + 15/56*x^7 + ...
		

Crossrefs

Programs

  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n+k+1,n) * sum((-1)^(j) * binomial(k+1,j) * sum((-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i), i,1,n), j,1,k+1), k,0,n) / (n+1); /* Vladimir Kruchinin, Mar 29 2013 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 + log(1 + x * A)); n! * polcoeff( A, n))}
    

Formula

E.g.f. is solution to y = y' * (1 - x + x*y).
a(n) = sum(k=0..n, binomial(n+k+1,n) * sum(j=1..k+1, (-1)^(j) * binomial(k+1,j) * sum(i=1..n, (-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i)))) / (n+1), n>0, a(0)=1. [Vladimir Kruchinin, Mar 29 2013]
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.37455701074370748653... (see A238274). - Vaclav Kotesovec, Feb 24 2014
a(n) = n! * Sum_{k=0..n} Stirling1(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2023

A247075 Expansion of e.g.f.: x^2*G'(x)/G(x)^2, where G(x) satisfies G(x) = x*(1+log(1+G(x))).

Original entry on oeis.org

1, 0, -1, -2, 12, 96, -220, -7440, -15624, 813120, 7340112, -104165280, -2442773520, 8815815360, 855578733984, 4653629425536, -317564443445760, -5591544140206080, 110965435244017920, 4730495445765296640, -16883238483957574656
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 17 2014

Keywords

Crossrefs

Cf. A177380.

Programs

  • Magma
    [(&+[Factorial(j)*Binomial(n-1,j)*StirlingFirst(n,j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 08 2023
    
  • Maple
    A:= n -> add(k!*binomial(n-1,k)*combinat:-stirling1(n,k),k=0..n):
    seq(A(n),n=0..30); # Robert Israel, Nov 17 2014
  • Mathematica
    Table[Sum[StirlingS1[n, k] k! Binomial[n-1, k], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Nov 17 2014 *)
  • Maxima
    a(n):=sum(k!*binomial(n-1,k)*stirling1(n,k),k,0,n);
    
  • SageMath
    def A247075(n): return sum( (-1)^(n-k)*factorial(k)*binomial(n-1,k)*stirling_number1(n,k) for k in range(n+1))
    [A247075(n) for n in range(21)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = Sum_{k=0..n} k!*binomial(n-1,k)*Stirling1(n,k).
E.g.f.: x^2*G'(x)/G(x)^2 where G(x) = Series_Reversion(x/(1 + log(1+x))); see A177380. - Paul D. Hanna, Nov 17 2014

A177379 E.g.f. satisfies: A(x) = 1/(1-x - x*log(A(x))).

Original entry on oeis.org

1, 1, 4, 27, 260, 3270, 50904, 946134, 20462896, 505137312, 14020517520, 432340670520, 14667108820704, 542979374426736, 21784934875431168, 941691211940974320, 43634507604383543040, 2157698329617806488320
Offset: 0

Views

Author

Paul D. Hanna, May 15 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 260*x^4/4! +...
Log(A(x)) = G(x) - 1 where G(x) = e.g.f. of A138013 begins:
G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...
and satisfies: exp(1 - G(x)) = 1 - x*G(x).
Contribution from _Paul D. Hanna_, Jul 16 2010: (Start)
Given e.g.f. A(x), and A179424 = Riordan array (A(x),x*A(x)) where the g.f. of column k in A179424 equals A(x)^(k+1):
1;
1, 1;
4/2!, 2, 1;
27/3!, 10/2!, 3, 1;
260/4!, 78/3!, 18/2!, 4, 1;
3270/5!, 832/4!, 159/3!, 28/2!, 5, 1;
...
then the matrix log of A179424 equals the triangular matrix:
0;
1, 0;
1, 2, 0;
1, 2, 3, 0;
1, 2, 3, 4, 0;
1, 2, 3, 4, 5, 0; ...
in which column k equals k+1 in row n for n>k>=0.
(End)
		

Crossrefs

Cf. A179424. [From Paul D. Hanna, Jul 16 2010]

Programs

  • Mathematica
    CoefficientList[1/(1-InverseSeries[Series[x/(1-Log[1-x]),{x,0,20}],x]),x]*Range[0,20]! (* Vaclav Kotesovec, Jan 11 2014 *)
  • PARI
    {a(n)=n!*polcoeff(1/(1-serreverse(x/(1-log(1-x+x*O(x^n))))),n)}
    
  • PARI
    /* Using matrix log of Riordan array (A(x),x*A(x)): */
    {a(n)=local(L=matrix(n+1,n+1,r,c,if(r>c,c)),M=sum(m=0,#L,L^m/m!));n!*M[n+1,1]} \\ Paul D. Hanna, Jul 16 2010
    
  • PARI
    /* From A(x) = (1 + x*A'(x)/A(x))*(1 - x*A(x))/(1-x): */
    {a(n)=local(A=1+x);for(k=2,n,A=A-polcoeff((1+x*deriv(A)/A)*(1-x*A)/(1-x+x*O(x^n)),k)*x^k/(k-1));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jul 16 2010

Formula

E.g.f.: A(x) = 1/(1 - Series_Reversion(x/(1 - log(1-x)))).
...
Let G(x) = e.g.f. of A138013, then:
. A(x) = exp(G(x) - 1),
. A(x) = 1/(1 - x*G(x))
where G(x) = 1 - log(1 - x*G(x)).
...
Let F(x) = e.g.f. of A177380, then:
. [x^n] A(x)^(-n+1)/(-n+1) = A177380(n)/n! for n>1,
. [x^n] F(x)^(n+1)/(n+1) = a(n)/n! for n>=0,
. A(x) = F(x*A(x)) and A(x/F(x)) = F(x),
. A(x) = (1/x)*Series_Reversion(x/F(x))
where F(x) = 1+x + x*log(F(x)).
Contribution from Paul D. Hanna, Jul 16 2010: (Start)
E.g.f. satisfies: A(x) = (1 + x*A'(x)/A(x))*(1 - x*A(x))/(1-x).
...
Let A_n(x) denote the n-th iteration of x*A(x) with G = x/(1-x), then:
. A(x) = 1 + G + G*Dx(G)/2! + G*Dx(G*Dx(G))/3! + G*Dx(G*Dx(G*Dx(G)))/4! +...
. A_n(x)/x = 1 + n*G + n^2*G*Dx(G)/2! + n^3*G*Dx(G*Dx(G))/3! + n^4*G*Dx(G*Dx(G*Dx(G)))/4! +...
where Dx(F) = d/dx(x*F).
...
Given e.g.f. A(x), the matrix log of the Riordan array (A(x),x*A(x)) equals the matrix L defined by L(n,k)=k+1 and L(n,n)=0, for n>=0, n>k.
(End)
a(n) ~ sqrt(s-1) * n^(n-1) * s^(n+1) / exp(n), where s = -LambertW(-1,-exp(-2)) = 3.14619322062... (see A226572). - Vaclav Kotesovec, Jan 11 2014

A308565 a(n) = Sum_{k=0..n} binomial(n,k) * Stirling1(n,k) * k!.

Original entry on oeis.org

1, 1, 0, -6, -12, 140, 1020, -5208, -117264, -2448, 17756640, 117905040, -3177424800, -56997933408, 523176632160, 25824592321920, 31907065317120, -12118922683971840, -151839867298498560, 5619086944920958464, 172859973799199892480, -1989399401447725854720, -170925579909303883614720
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] StirlingS1[n, k] k!, {k, 0, n}], {n, 0, 22}]
    Table[n! SeriesCoefficient[(1 + Log[1 + x])^n, {x, 0, n}], {n, 0, 22}]

Formula

a(n) = n! * [x^n] (1 + log(1 + x))^n.
Showing 1-5 of 5 results.