cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A308565 a(n) = Sum_{k=0..n} binomial(n,k) * Stirling1(n,k) * k!.

Original entry on oeis.org

1, 1, 0, -6, -12, 140, 1020, -5208, -117264, -2448, 17756640, 117905040, -3177424800, -56997933408, 523176632160, 25824592321920, 31907065317120, -12118922683971840, -151839867298498560, 5619086944920958464, 172859973799199892480, -1989399401447725854720, -170925579909303883614720
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] StirlingS1[n, k] k!, {k, 0, n}], {n, 0, 22}]
    Table[n! SeriesCoefficient[(1 + Log[1 + x])^n, {x, 0, n}], {n, 0, 22}]

Formula

a(n) = n! * [x^n] (1 + log(1 + x))^n.
Showing 1-1 of 1 results.