A080253
a(n) is the number of elements in the Coxeter complex of type B_n (or C_n).
Original entry on oeis.org
1, 3, 17, 147, 1697, 24483, 423857, 8560947, 197613377, 5131725123, 148070287697, 4699645934547, 162723741209057, 6103779096411363, 246564971326084337, 10671541841672056947, 492664975795819140737, 24166020791610523843203
Offset: 0
a(2)=17 as follows. Let (W,S) be a Coxeter system of type B_2. By definition the elements of the associated complex are right cosets of "special parabolic subgroups". These are simply the subgroups generated by subsets of S. In our case they have orders 1,2,2,8 and hence have 8,4,4,1 cosets respectively, giving a total of 17.
- Kenneth S. Brown, Buildings, Springer-Verlag, 1989.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Peter C. Fishburn, Signed Orders, Choice Probabilities and Linear Polytopes, Journal of Mathematical Psychology, Volume 45, Issue 1, (2001), pp. 53-80.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Eric Weisstein's MathWorld, Polylogarithm.
-
A080253 := proc(n) option remember; local k; if n <1 then 1 else 1 + add(2^r*binomial(n,r)*A080253(n-r),r=1..n); fi; end; seq(A080253(n),n=0..30); # Detlef Pauly
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[c[n], {n, 0, 100}] (* Emanuele Munarini, Oct 04 2012 *)
CoefficientList[Series[E^x/(2-E^(2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 07 2015 *)
Round@Table[(-1)^(n + 1) (PolyLog[-n, Sqrt[2]] - PolyLog[-n, -Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(c(n),n,0,40); // Emanuele Munarini, Oct 04 2012
-
def A080253(n):
return add(A060187(n, k) << (n-k) for k in (0..n))
[A080253(n) for n in (0..17)] # Peter Luschny, Apr 26 2013
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003
A000556
Expansion of exp(-x) / (1 - exp(x) + exp(-x)).
Original entry on oeis.org
1, 1, 5, 31, 257, 2671, 33305, 484471, 8054177, 150635551, 3130337705, 71556251911, 1784401334897, 48205833997231, 1402462784186105, 43716593539939351, 1453550100421124417, 51350258701767067711, 1920785418183176050505, 75839622064482770570791
Offset: 0
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..401
- Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
- Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021).
- G. Ledin, Jr., On a certain kind of Fibonacci sums, Fib. Quart., 5 (1967), 45-58.
- R. L. Ollerton and A. G. Shannon, A Note on Brousseau's Summation Problem, Fibonacci Quart. 58 (2020), no. 5, 190-199.
- Eric Weisstein's MathWorld, Polylogarithm.
- Eric Weisstein's MathWorld, Golden Ratio.
- Eric Weisstein's MathWorld, Lucas Number.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*(2^j-1), j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 05 2019
-
CoefficientList[Series[E^(-x)/(1-E^x+E^(-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 04 2015 *)
Round@Table[(-1)^(n+1) (PolyLog[-n, 1-GoldenRatio] GoldenRatio + PolyLog[-n, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 30 2015 *)
-
a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 2)); \\ Michel Marcus, Oct 30 2015
A336950
E.g.f.: 1 / (1 - x * exp(2*x)).
Original entry on oeis.org
1, 1, 6, 42, 392, 4600, 64752, 1063216, 19952256, 421227648, 9880951040, 254960721664, 7176891675648, 218857588139008, 7187394935347200, 252897556424140800, 9491754142468702208, 378509920569294684160, 15982018774576565649408, 712306819507400060502016
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(2 (n - k))^k/k!, {k, 0, n}], {n, 1, 19}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(2*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A367977
Expansion of e.g.f. exp(-x) / (2 - exp(2*x)).
Original entry on oeis.org
1, 1, 9, 73, 849, 12241, 211929, 4280473, 98806689, 2565862561, 74035143849, 2349822967273, 81361870604529, 3051889548205681, 123282485663042169, 5335770920836028473, 246332487897909570369, 12083010395805261921601, 627555570373369525058889, 34404109751876393769480073
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50);
Coefficients(R!(Laplace( Exp(-x)/(2-Exp(2*x)) ))) // G. C. Greubel, Jun 10 2024
-
nmax = 19; CoefficientList[Series[Exp[-x]/(2 - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (-1)^n + Sum[Binomial[n, k] 2^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
def A367977_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-x)/(2-exp(2*x)) ).egf_to_ogf().list()
A367977_list(50) # G. C. Greubel, Jun 10 2024
A328182
Expansion of e.g.f. 1 / (2 - exp(3*x)).
Original entry on oeis.org
1, 3, 27, 351, 6075, 131463, 3413907, 103429791, 3581223435, 139498558263, 6037616347587, 287444492409231, 14929010774254395, 839982382565841063, 50897213545996785267, 3304312091004451756671, 228821504027595115886955, 16836102104577636004291863, 1311625494765417347634022947
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*3^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 06 2019
-
nmax = 18; CoefficientList[Series[1/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[3^k Binomial[n, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
Table[3^n HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 18}]
A352117
Expansion of e.g.f. 1/sqrt(2 - exp(2*x)).
Original entry on oeis.org
1, 1, 5, 37, 377, 4921, 78365, 1473277, 31938737, 784384561, 21523937525, 652667322517, 21672312694697, 782133969325801, 30481907097849485, 1275870745561131757, 57083444567425884257, 2718602143583362124641, 137315150097164841942245
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[2*x])^(-1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
a[n]:=if n=0 then 1 else sum(a[n-k]*(1-k/n/2)*binomial(n,k)*2^k,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 06 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(2-exp(2*x))))
-
a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*stirling(n, k, 2));
A328183
Expansion of e.g.f. 1 / (2 - exp(4*x)).
Original entry on oeis.org
1, 4, 48, 832, 19200, 553984, 19181568, 774848512, 35771842560, 1857882947584, 107214340620288, 6805814291464192, 471298297319915520, 35356865248765149184, 2856513752723261227008, 247264693517100223823872, 22830563015939200206766080, 2239752722978295095737974784
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*4^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 06 2019
-
nmax = 17; CoefficientList[Series[1/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[4^k Binomial[n, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
Table[2^(2 n - 1) HurwitzLerchPhi[1/2, -n, 0], {n, 0, 17}]
A367835
Expansion of e.g.f. 1/(2 - x - exp(2*x)).
Original entry on oeis.org
1, 3, 22, 242, 3544, 64872, 1424976, 36517840, 1069533824, 35240047232, 1290137297152, 51955085596416, 2282489348834304, 108630445541684224, 5567741266098944000, 305752314499878569984, 17909736027185859100672, 1114647522476340562132992
Offset: 0
-
A367835 := proc(n)
option remember ;
if n = 0 then
1 ;
else
n*procname(n-1)+add(2^k*binomial(n,k)*procname(n-k),k=1..n) ;
end if;
end proc:
seq(A367835(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
A336947
E.g.f.: 1 / (exp(-2*x) - x).
Original entry on oeis.org
1, 3, 14, 98, 920, 10792, 151888, 2494032, 46803072, 988095104, 23178247424, 598074306304, 16835199087616, 513385352524800, 16859837094942720, 593234633904293888, 22265289445252628480, 887889931920920313856, 37489832605652634763264, 1670894259596134872711168
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(Exp[-2 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(2 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 19}]
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] - Sum[Binomial[n, k] (-2)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 19}]
-
seq(n)={ Vec(serlaplace(1 / (exp(-2*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
A354313
Expansion of e.g.f. 1/(1 - x/2 * (exp(2 * x) - 1)).
Original entry on oeis.org
1, 0, 2, 6, 40, 280, 2496, 25424, 297984, 3920256, 57349120, 922611712, 16193375232, 307896882176, 6304666798080, 138318662000640, 3236895083167744, 80483201605795840, 2118875812456366080, 58882581280649117696, 1722441885524719042560
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/2*(exp(2*x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-2)*binomial(i, j)*v[i-j+1])); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*k!*stirling(n-k, k, 2)/(n-k)!);
Showing 1-10 of 15 results.
Comments