A000557
Expansion of e.g.f. 1/(1 - 2*sinh(x)).
Original entry on oeis.org
1, 2, 8, 50, 416, 4322, 53888, 783890, 13031936, 243733442, 5064992768, 115780447730, 2887222009856, 77998677862562, 2269232452763648, 70734934220015570, 2351893466832306176, 83086463910558199682, 3107896091715557654528, 122711086194279627711410
Offset: 0
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
- Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021).
- G. Ledin, Jr., On a certain kind of Fibonacci sums, Fib. Quart., 5 (1967), 45-58.
- Prabha Sivaraman Nair, A note on alternating weighted sums of Fibonacci numbers, Math. Montisnigri (2024) Vol. LX, 32-49. See p. 38.
- Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 8.
- R. L. Ollerton and A. G. Shannon, A Note on Brousseau's Summation Problem, Fibonacci Quart. 58 (2020), no. 5, 190-199.
- Daniele Parisse, On hypersequences of an arbitrary sequence and their weighted sums, Integers (2024) Vol. 24, Art. No. A70. See p. 25.
- Eric Weisstein's MathWorld, Polylogarithm.
-
A000557 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n,j=0..k),k=0..n) end: # Peter Luschny, Jul 31 2011
-
f[n_] := Sum[ k!*StirlingS2[n, k]*Fibonacci[k + 2], {k, 0, n}]; Array[f, 20, 0] (* Robert G. Wilson v, Aug 16 2011 *)
With[{nn=20},CoefficientList[Series[1/(1-2*Sinh[x]),{x,0,nn}],x]Range[ 0,nn]!] (* Harvey P. Dale, Mar 11 2012 *)
Round@Table[(-1)^n (PolyLog[-n, 1-GoldenRatio]-PolyLog[-n, GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1-2*sinh(x)))) \\ Michel Marcus, May 18 2022
A216794
Number of set partitions of {1,2,...,n} with labeled blocks and a (possibly empty) subset of designated elements in each block.
Original entry on oeis.org
1, 2, 12, 104, 1200, 17312, 299712, 6053504, 139733760, 3628677632, 104701504512, 3323151509504, 115063060869120, 4316023589937152, 174347763227738112, 7545919601962287104, 348366745238330081280, 17087957176042900815872, 887497598764802460352512
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- José A. Adell, Beáta Bényi, Venkat Murali, and Sithembele Nkonkobe, Generalized Barred Preferential Arrangements, Transactions on Combinatorics (2022).
- Sithembele Nkonkobe, Venkat Murali, and Béata Bényi, Generalised Barred Preferential Arrangements, arXiv:1907.08944 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Polylogarithm.
-
a := n -> 2^(n-1)*(polylog(-n, 1/2)+`if`(n=0,1,0)):
seq(round(evalf(a(n),32)), n=0..18); # Peter Luschny, Nov 03 2015
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*2^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 04 2019
-
nn=25;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[1/(1-a),{x,0,nn}],x]
Round@Table[(-1)^(n+1) (PolyLog[-n, Sqrt[2]] + PolyLog[-n, -Sqrt[2]])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
a(n) = 2^(n-1)*(polylog(-n, 1/2) + 0^n); \\ Michel Marcus, May 30 2018
-
def A216794(n):
return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1))
[A216794(n) for n in range(18)] # Peter Luschny, Jul 22 2014
A005923
From solution to a difference equation.
Original entry on oeis.org
1, 3, 13, 81, 673, 6993, 87193, 1268361, 21086113, 394368993, 8195330473, 187336699641, 4671623344753, 126204511859793, 3671695236949753, 114451527759954921, 3805443567253430593, 134436722612325267393, 5028681509898733705033, 198550708258762398282201
Offset: 0
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See p. 49.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Round@Table[Sum[Binomial[n, k] (-1)^k (PolyLog[-k, 1-GoldenRatio] - PolyLog[-k, GoldenRatio])/Sqrt[5] , {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
A341724
Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Triangle begins:
1;
-2, 1;
8, -4, 1;
-50, 24, -6, 1;
416, -200, 48, -8, 1;
-4322, 2080, -500, 80, -10, 1;
53888, -25932, 6240, -1000, 120, -12, 1;
-783890, 377216, -90762, 14560, -1750, 168, -14, 1;
13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
-
egf:= k-> x^k / ((1-2*sinh(-x))*k!):
A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A320352
Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).
Original entry on oeis.org
0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0
-
seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]
A341723
Triangle read by rows: coefficients of expansion of certain weighted sums P_1(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -1, 1, 5, -2, 1, -31, 15, -3, 1, 257, -124, 30, -4, 1, -2671, 1285, -310, 50, -5, 1, 33305, -16026, 3855, -620, 75, -6, 1, -484471, 233135, -56091, 8995, -1085, 105, -7, 1, 8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
5, -2, 1;
-31, 15, -3, 1;
257, -124, 30, -4, 1;
-2671, 1285, -310, 50, -5, 1;
33305, -16026, 3855, -620, 75, -6, 1;
-484471, 233135, -56091, 8995, -1085, 105, -7, 1;
8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 2.
-
egf:= k-> exp(x)*x^k / ((1+2*sinh(x))*k!):
A341723:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
second Maple program:
A341723:= (n, k)-> (-1)^(n-k)*binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling2(n-k,j), j=0.. n-k):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
A355408
Expansion of e.g.f. 1/(1 + exp(x) - exp(3*x)).
Original entry on oeis.org
1, 2, 16, 170, 2416, 42962, 916696, 22819610, 649207456, 20778364322, 738918769576, 28905116527850, 1233506128752496, 57025618592932082, 2839117599033828856, 151446758367400488890, 8617182795217834505536, 520954229292164353554242
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-1)*binomial(i, j)*v[i-j+1])); v;
Original entry on oeis.org
1, -2, 15, -124, 1285, -16026, 233135, -3875768, 72487593, -1506355510, 34433714755, -858675022932, 23197217353661, -674881675961234, 21036941762791575, -699465496639029616, 24710351707159115089, -924304656631807218798, 36494922945480344959595
Offset: 1
-
a := n -> (-1)^(n+1)*n*add(k!*combinat:-fibonacci(k+1)*Stirling2(n-1, k), k = 0..n-1): seq(a(n), n = 0..20); # Peter Luschny, May 13 2022
A337556
a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} binomial(n,k) * (4^k-1) * a(n-k).
Original entry on oeis.org
1, 1, 7, 57, 607, 8121, 130527, 2447257, 52435327, 1263925881, 33851510047, 997303255257, 32052722909247, 1116001351341241, 41845542004844767, 1681112968022124057, 72039936723424794367, 3280036569708658302201, 158127582939120607830687, 8046697501049910668173657
Offset: 0
-
E:= 3 / (3 + exp(x) - exp(4*x)):
S:= series(E,x,41):
seq(n!*coeff(S,x,n),n=0..40); # Robert Israel, Oct 13 2020
-
a[0] = 1; a[n_] := a[n] = (1/3) Sum[Binomial[n, k] (4^k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[3/(3 + Exp[x] - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(3 / (3 + exp(x + O(x*x^n)) - exp(4*x + O(x*x^n)))))} \\ Andrew Howroyd, Aug 31 2020
Original entry on oeis.org
1, -4, 24, -200, 2080, -25932, 377216, -6271120, 117287424, -2437334420, 55714920448, -1389365372760, 37533886128128, -1091981490075868, 34038486791454720, -1131758947520249120, 39982188936149204992, -1495556350390047594276, 59050025742595595436032
Offset: 1
-
A341727 := n -> (-1)^(n-1)*n*add(k!*combinat[fibonacci](k+2)*Stirling2(n-1, k), k=0..n-1):seq(A341727(n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341727 := series(x / (1 + 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341727, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
Showing 1-10 of 16 results.
Comments