A341724
Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Triangle begins:
1;
-2, 1;
8, -4, 1;
-50, 24, -6, 1;
416, -200, 48, -8, 1;
-4322, 2080, -500, 80, -10, 1;
53888, -25932, 6240, -1000, 120, -12, 1;
-783890, 377216, -90762, 14560, -1750, 168, -14, 1;
13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
-
egf:= k-> x^k / ((1-2*sinh(-x))*k!):
A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A341723
Triangle read by rows: coefficients of expansion of certain weighted sums P_1(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -1, 1, 5, -2, 1, -31, 15, -3, 1, 257, -124, 30, -4, 1, -2671, 1285, -310, 50, -5, 1, 33305, -16026, 3855, -620, 75, -6, 1, -484471, 233135, -56091, 8995, -1085, 105, -7, 1, 8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
5, -2, 1;
-31, 15, -3, 1;
257, -124, 30, -4, 1;
-2671, 1285, -310, 50, -5, 1;
33305, -16026, 3855, -620, 75, -6, 1;
-484471, 233135, -56091, 8995, -1085, 105, -7, 1;
8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 2.
-
egf:= k-> exp(x)*x^k / ((1+2*sinh(x))*k!):
A341723:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
second Maple program:
A341723:= (n, k)-> (-1)^(n-k)*binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling2(n-k,j), j=0.. n-k):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
Original entry on oeis.org
1, -4, 24, -200, 2080, -25932, 377216, -6271120, 117287424, -2437334420, 55714920448, -1389365372760, 37533886128128, -1091981490075868, 34038486791454720, -1131758947520249120, 39982188936149204992, -1495556350390047594276, 59050025742595595436032
Offset: 1
-
A341727 := n -> (-1)^(n-1)*n*add(k!*combinat[fibonacci](k+2)*Stirling2(n-1, k), k=0..n-1):seq(A341727(n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341727 := series(x / (1 + 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341727, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
Original entry on oeis.org
1, 6, 39, 324, 3365, 41958, 610351, 10146888, 189775017, 3943689930, 90148635203, 2248040395692, 60731103481789, 1766863166037102, 55075428554246295, 1831224444159278736, 64692540643308320081, 2419861007021854813074, 95544948688075940395627
Offset: 1
-
A341728 := n -> add((n-k)*binomial(n, k)add(j!*combinat[fibonacci](j+2)*Stirling2(k,j), j=0..k), k=0..n):seq(A341728(n), n=1.. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341728 := series(x*exp(x) / (1 - 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341728, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
Showing 1-4 of 4 results.
Comments