cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A341726 Column 1 of A341723.

Original entry on oeis.org

1, -2, 15, -124, 1285, -16026, 233135, -3875768, 72487593, -1506355510, 34433714755, -858675022932, 23197217353661, -674881675961234, 21036941762791575, -699465496639029616, 24710351707159115089, -924304656631807218798, 36494922945480344959595
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^(n+1)*n*add(k!*combinat:-fibonacci(k+1)*Stirling2(n-1, k), k = 0..n-1): seq(a(n), n = 0..20); # Peter Luschny, May 13 2022

Formula

a(n) = (-1)^(n+1)*n*Sum_{k=0..n-1} k!*Fibonacci(k+1)*Stirling2(n-1, k). - Peter Luschny, May 13 2022

Extensions

More terms from Peter Luschny, May 13 2022

A341724 Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.

Original entry on oeis.org

1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Comments

Conjectures from Mélika Tebni, Sep 04 2023: (Start)
For 0 < k < p and p prime, T(p,k) == 0 (mod p).
For 0 <= k < n and n = 2^m (m natural number), T(n,k) == 0 (mod n). (End)

Examples

			Triangle begins:
         1;
        -2,        1;
         8,       -4,       1;
       -50,       24,      -6,       1;
       416,     -200,      48,      -8,     1;
     -4322,     2080,    -500,      80,   -10,     1;
     53888,   -25932,    6240,   -1000,   120,   -12,   1;
   -783890,   377216,  -90762,   14560, -1750,   168, -14,   1;
  13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
  ...
		

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.

Crossrefs

Column 0 is a signed version of A000557, column 1 is A341727.

Programs

  • Maple
    egf:= k-> x^k / ((1-2*sinh(-x))*k!):
    A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
E.g.f. of column k: x^k / ((1-2*sinh(-x))*k!).
T(n,k) = (-1)^(n-k)*binomial(n,k)*A000557(n-k).
Recurrence: T(n,0) = (-1)^n*A000557(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End)
From Alois P. Heinz, Sep 04 2023: (Start)
|Sum_{k=0..n} T(n,k)| = A000556(n).
Sum_{k=0..n} |T(n,k)| = A005923(n).
Sum_{k=0..n} k * T(n,k) = A341726(n). (End)

A341725 Triangle read by rows: coefficients in expansion of Asveld's polynomials p_j(x).

Original entry on oeis.org

1, 3, 1, 13, 6, 1, 81, 39, 9, 1, 673, 324, 78, 12, 1, 6993, 3365, 810, 130, 15, 1, 87193, 41958, 10095, 1620, 195, 18, 1, 1268361, 610351, 146853, 23555, 2835, 273, 21, 1, 21086113, 10146888, 2441404, 391608, 47110, 4536, 364, 24, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Examples

			Triangle begins:
      1,
      3,     1,
     13,     6,     1,
     81,    39,     9,    1,
    673,   324,    78,   12,   1,
   6993,  3365,   810,  130,  15,  1,
  87193, 41958, 10095, 1620, 195, 18, 1,
  ...
		

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 5.

Crossrefs

Column 0 is A005923, column 1 is A341728.

Programs

  • Maple
    egf:= k-> exp(x)*x^k / ((1-2*sinh(x))*k!):
    A341725:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A341725(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
T(n,k) = binomial(n,k)*A005923(n-k).
E.g.f. of column k: exp(x)*x^k / ((1-2*sinh(x))*k!).
T(n,k) = Sum_{j=k..n} binomial(n,j)*A000557(n-j)*binomial(j,k).
Recurrence: T(n,0) = A005923(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End)
Sum_{k=0..n} (-1)^k * T(n,k) = A000557(n). - Alois P. Heinz, Sep 04 2023

Extensions

More terms from Mélika Tebni, Sep 04 2023

A367887 Expansion of e.g.f. exp(2*x) / (1 - 2*sinh(x)).

Original entry on oeis.org

1, 4, 20, 130, 1088, 11314, 141080, 2052250, 34118048, 638102434, 13260323240, 303117147370, 7558845354608, 204203189722354, 5940927689713400, 185186461979970490, 6157337034085736768, 217523186522883467074, 8136577601614291359560, 321261794453042025993610, 13352198666907246870560528
Offset: 0

Views

Author

Mélika Tebni, Dec 04 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> -1-0^n+add(k!*combinat[fibonacci](k+4)*Stirling2(n, k), k = 0 .. n):
    seq(a(n), n=0..20);
    # second program:
    a := proc(n) option remember; `if`(n=0,1,3^n+add((2^(n-k)-1)*binomial(n, k)*a(k), k=0..n-1)) end:
    seq(a(n), n=0..20);
    # third program:
    a := n -> add(2^k*binomial(n, k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-k, j), j=0..n-k), k=0..n):
    seq(a(n), n=0..20);
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(2*x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Dec 04 2023

Formula

a(n) = Sum_{k=0..n} A341725(n,k).
a(n) = (-1)^n*Sum_{k=0..n} (-2)^k*A341724(n,k).
a(n) = -1-0^n+Sum_{k=0..n} k!*Fibonacci(k+4)*Stirling2(n,k).
a(0) = 1; a(n) = 3^n+Sum_{k=0..n-1} (2^(n-k)-1)*binomial(n,k)*a(k).
a(n) ~ n! * (phi)^2 / (sqrt(5) * (log(phi))^(n+1)), where phi is the golden ratio.
a(n) = -1 + A000557(n) + A005923(n) = -1 + Sum_{k=0..n} |A341723(n,k) + A341724(n,k)|.
Showing 1-4 of 4 results.