Original entry on oeis.org
1, -2, 15, -124, 1285, -16026, 233135, -3875768, 72487593, -1506355510, 34433714755, -858675022932, 23197217353661, -674881675961234, 21036941762791575, -699465496639029616, 24710351707159115089, -924304656631807218798, 36494922945480344959595
Offset: 1
-
a := n -> (-1)^(n+1)*n*add(k!*combinat:-fibonacci(k+1)*Stirling2(n-1, k), k = 0..n-1): seq(a(n), n = 0..20); # Peter Luschny, May 13 2022
A341724
Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Triangle begins:
1;
-2, 1;
8, -4, 1;
-50, 24, -6, 1;
416, -200, 48, -8, 1;
-4322, 2080, -500, 80, -10, 1;
53888, -25932, 6240, -1000, 120, -12, 1;
-783890, 377216, -90762, 14560, -1750, 168, -14, 1;
13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
-
egf:= k-> x^k / ((1-2*sinh(-x))*k!):
A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A341725
Triangle read by rows: coefficients in expansion of Asveld's polynomials p_j(x).
Original entry on oeis.org
1, 3, 1, 13, 6, 1, 81, 39, 9, 1, 673, 324, 78, 12, 1, 6993, 3365, 810, 130, 15, 1, 87193, 41958, 10095, 1620, 195, 18, 1, 1268361, 610351, 146853, 23555, 2835, 273, 21, 1, 21086113, 10146888, 2441404, 391608, 47110, 4536, 364, 24, 1
Offset: 0
Triangle begins:
1,
3, 1,
13, 6, 1,
81, 39, 9, 1,
673, 324, 78, 12, 1,
6993, 3365, 810, 130, 15, 1,
87193, 41958, 10095, 1620, 195, 18, 1,
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 5.
-
egf:= k-> exp(x)*x^k / ((1-2*sinh(x))*k!):
A341725:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341725(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A367887
Expansion of e.g.f. exp(2*x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 4, 20, 130, 1088, 11314, 141080, 2052250, 34118048, 638102434, 13260323240, 303117147370, 7558845354608, 204203189722354, 5940927689713400, 185186461979970490, 6157337034085736768, 217523186522883467074, 8136577601614291359560, 321261794453042025993610, 13352198666907246870560528
Offset: 0
-
a := n -> -1-0^n+add(k!*combinat[fibonacci](k+4)*Stirling2(n, k), k = 0 .. n):
seq(a(n), n=0..20);
# second program:
a := proc(n) option remember; `if`(n=0,1,3^n+add((2^(n-k)-1)*binomial(n, k)*a(k), k=0..n-1)) end:
seq(a(n), n=0..20);
# third program:
a := n -> add(2^k*binomial(n, k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-k, j), j=0..n-k), k=0..n):
seq(a(n), n=0..20);
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Dec 04 2023
Showing 1-4 of 4 results.
Comments