Original entry on oeis.org
1, -4, 24, -200, 2080, -25932, 377216, -6271120, 117287424, -2437334420, 55714920448, -1389365372760, 37533886128128, -1091981490075868, 34038486791454720, -1131758947520249120, 39982188936149204992, -1495556350390047594276, 59050025742595595436032
Offset: 1
-
A341727 := n -> (-1)^(n-1)*n*add(k!*combinat[fibonacci](k+2)*Stirling2(n-1, k), k=0..n-1):seq(A341727(n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341727 := series(x / (1 + 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341727, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
A341725
Triangle read by rows: coefficients in expansion of Asveld's polynomials p_j(x).
Original entry on oeis.org
1, 3, 1, 13, 6, 1, 81, 39, 9, 1, 673, 324, 78, 12, 1, 6993, 3365, 810, 130, 15, 1, 87193, 41958, 10095, 1620, 195, 18, 1, 1268361, 610351, 146853, 23555, 2835, 273, 21, 1, 21086113, 10146888, 2441404, 391608, 47110, 4536, 364, 24, 1
Offset: 0
Triangle begins:
1,
3, 1,
13, 6, 1,
81, 39, 9, 1,
673, 324, 78, 12, 1,
6993, 3365, 810, 130, 15, 1,
87193, 41958, 10095, 1620, 195, 18, 1,
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 5.
-
egf:= k-> exp(x)*x^k / ((1-2*sinh(x))*k!):
A341725:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341725(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A341723
Triangle read by rows: coefficients of expansion of certain weighted sums P_1(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -1, 1, 5, -2, 1, -31, 15, -3, 1, 257, -124, 30, -4, 1, -2671, 1285, -310, 50, -5, 1, 33305, -16026, 3855, -620, 75, -6, 1, -484471, 233135, -56091, 8995, -1085, 105, -7, 1, 8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
5, -2, 1;
-31, 15, -3, 1;
257, -124, 30, -4, 1;
-2671, 1285, -310, 50, -5, 1;
33305, -16026, 3855, -620, 75, -6, 1;
-484471, 233135, -56091, 8995, -1085, 105, -7, 1;
8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 2.
-
egf:= k-> exp(x)*x^k / ((1+2*sinh(x))*k!):
A341723:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
second Maple program:
A341723:= (n, k)-> (-1)^(n-k)*binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling2(n-k,j), j=0.. n-k):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
A364822
Expansion of e.g.f. cosh(x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 2, 9, 56, 465, 4832, 60249, 876416, 14570145, 272502272, 5662834089, 129446475776, 3228012339825, 87205172928512, 2537079010567929, 79084060649947136, 2629496833837277505, 92893490657046167552, 3474733464040954877769, 137195165161622584426496, 5702069567580948171751185
Offset: 0
-
a := n -> add(binomial(n,2*k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-2*k,j), j=0..n-2*k), k=0..floor(n/2)):
seq(a(n), n = 0 .. 20);
# second program:
b := proc(n) option remember; `if`(n = 0, 1, 2+2*add(binomial(n,2*k-1)*b(n-2*k+1), k=1..floor((n+1)/2))) end:
a := proc(n) `if`(n = 0, 1, b(n)/2) end: seq(a(n), n = 0 .. 20);
# third program:
(1/2)*((exp(-x) + exp(x))/(1 + exp(-x) - exp(x))): series(%, x, 21):
seq(n!*coeff(%, x, n), n = 0..20); # Peter Luschny, Nov 07 2023
-
a[n_]:=n!*SeriesCoefficient[Cosh[x]/(1 - 2*Sinh[x]),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Nov 07 2023 *)
-
my(x='x+O('x^30)); Vec(serlaplace(cosh(x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Nov 07 2023
A367887
Expansion of e.g.f. exp(2*x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 4, 20, 130, 1088, 11314, 141080, 2052250, 34118048, 638102434, 13260323240, 303117147370, 7558845354608, 204203189722354, 5940927689713400, 185186461979970490, 6157337034085736768, 217523186522883467074, 8136577601614291359560, 321261794453042025993610, 13352198666907246870560528
Offset: 0
-
a := n -> -1-0^n+add(k!*combinat[fibonacci](k+4)*Stirling2(n, k), k = 0 .. n):
seq(a(n), n=0..20);
# second program:
a := proc(n) option remember; `if`(n=0,1,3^n+add((2^(n-k)-1)*binomial(n, k)*a(k), k=0..n-1)) end:
seq(a(n), n=0..20);
# third program:
a := n -> add(2^k*binomial(n, k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-k, j), j=0..n-k), k=0..n):
seq(a(n), n=0..20);
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Dec 04 2023
Showing 1-5 of 5 results.
Comments