Original entry on oeis.org
1, 6, 39, 324, 3365, 41958, 610351, 10146888, 189775017, 3943689930, 90148635203, 2248040395692, 60731103481789, 1766863166037102, 55075428554246295, 1831224444159278736, 64692540643308320081, 2419861007021854813074, 95544948688075940395627
Offset: 1
-
A341728 := n -> add((n-k)*binomial(n, k)add(j!*combinat[fibonacci](j+2)*Stirling2(k,j), j=0..k), k=0..n):seq(A341728(n), n=1.. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341728 := series(x*exp(x) / (1 - 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341728, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
A341724
Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Triangle begins:
1;
-2, 1;
8, -4, 1;
-50, 24, -6, 1;
416, -200, 48, -8, 1;
-4322, 2080, -500, 80, -10, 1;
53888, -25932, 6240, -1000, 120, -12, 1;
-783890, 377216, -90762, 14560, -1750, 168, -14, 1;
13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
-
egf:= k-> x^k / ((1-2*sinh(-x))*k!):
A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A341723
Triangle read by rows: coefficients of expansion of certain weighted sums P_1(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -1, 1, 5, -2, 1, -31, 15, -3, 1, 257, -124, 30, -4, 1, -2671, 1285, -310, 50, -5, 1, 33305, -16026, 3855, -620, 75, -6, 1, -484471, 233135, -56091, 8995, -1085, 105, -7, 1, 8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
5, -2, 1;
-31, 15, -3, 1;
257, -124, 30, -4, 1;
-2671, 1285, -310, 50, -5, 1;
33305, -16026, 3855, -620, 75, -6, 1;
-484471, 233135, -56091, 8995, -1085, 105, -7, 1;
8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 2.
-
egf:= k-> exp(x)*x^k / ((1+2*sinh(x))*k!):
A341723:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
second Maple program:
A341723:= (n, k)-> (-1)^(n-k)*binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling2(n-k,j), j=0.. n-k):
seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 09 2023
A365962
Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 48, 30, 9, 1, 312, 192, 60, 12, 1, 2520, 1560, 480, 100, 15, 1, 24480, 15120, 4680, 960, 150, 18, 1, 277200, 171360, 52920, 10920, 1680, 210, 21, 1, 3588480, 2217600, 685440, 141120, 21840, 2688, 280, 24, 1, 52254720, 32296320, 9979200, 2056320, 317520, 39312, 4032, 360, 27, 1
Offset: 0
Triangle begins:
1,
3, 1,
10, 6, 1,
48, 30, 9, 1,
312, 192, 60, 12, 1,
2520, 1560, 480, 100, 15, 1,
24480, 15120, 4680, 960, 150, 18, 1,
...
-
T := proc(n, k) option remember;if k = n then 1 else (n!/k!*combinat[fibonacci](n-k+3)) fi end: seq(print(seq(T(n, k), k = 0..n)), n=0..9);
# second Maple program:
T := (n,k) -> add(Stirling2(j, k)*add(Stirling1(n, i)*A341725(i, j), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);
-
T(n,k) = n!/k!*sum(j=k, n, fibonacci(j-k+1)*binomial(2,n-j)) \\ Winston de Greef, Oct 21 2023
-
T(n,k) = if(n == k, 1, n!/k!*fibonacci(n-k+3)) \\ Winston de Greef, Oct 21 2023
A367887
Expansion of e.g.f. exp(2*x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 4, 20, 130, 1088, 11314, 141080, 2052250, 34118048, 638102434, 13260323240, 303117147370, 7558845354608, 204203189722354, 5940927689713400, 185186461979970490, 6157337034085736768, 217523186522883467074, 8136577601614291359560, 321261794453042025993610, 13352198666907246870560528
Offset: 0
-
a := n -> -1-0^n+add(k!*combinat[fibonacci](k+4)*Stirling2(n, k), k = 0 .. n):
seq(a(n), n=0..20);
# second program:
a := proc(n) option remember; `if`(n=0,1,3^n+add((2^(n-k)-1)*binomial(n, k)*a(k), k=0..n-1)) end:
seq(a(n), n=0..20);
# third program:
a := n -> add(2^k*binomial(n, k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-k, j), j=0..n-k), k=0..n):
seq(a(n), n=0..20);
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Dec 04 2023
Showing 1-5 of 5 results.
Comments