A000557
Expansion of e.g.f. 1/(1 - 2*sinh(x)).
Original entry on oeis.org
1, 2, 8, 50, 416, 4322, 53888, 783890, 13031936, 243733442, 5064992768, 115780447730, 2887222009856, 77998677862562, 2269232452763648, 70734934220015570, 2351893466832306176, 83086463910558199682, 3107896091715557654528, 122711086194279627711410
Offset: 0
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
- Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021).
- G. Ledin, Jr., On a certain kind of Fibonacci sums, Fib. Quart., 5 (1967), 45-58.
- Prabha Sivaraman Nair, A note on alternating weighted sums of Fibonacci numbers, Math. Montisnigri (2024) Vol. LX, 32-49. See p. 38.
- Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 8.
- R. L. Ollerton and A. G. Shannon, A Note on Brousseau's Summation Problem, Fibonacci Quart. 58 (2020), no. 5, 190-199.
- Daniele Parisse, On hypersequences of an arbitrary sequence and their weighted sums, Integers (2024) Vol. 24, Art. No. A70. See p. 25.
- Eric Weisstein's MathWorld, Polylogarithm.
-
A000557 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n,j=0..k),k=0..n) end: # Peter Luschny, Jul 31 2011
-
f[n_] := Sum[ k!*StirlingS2[n, k]*Fibonacci[k + 2], {k, 0, n}]; Array[f, 20, 0] (* Robert G. Wilson v, Aug 16 2011 *)
With[{nn=20},CoefficientList[Series[1/(1-2*Sinh[x]),{x,0,nn}],x]Range[ 0,nn]!] (* Harvey P. Dale, Mar 11 2012 *)
Round@Table[(-1)^n (PolyLog[-n, 1-GoldenRatio]-PolyLog[-n, GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1-2*sinh(x)))) \\ Michel Marcus, May 18 2022
A000556
Expansion of exp(-x) / (1 - exp(x) + exp(-x)).
Original entry on oeis.org
1, 1, 5, 31, 257, 2671, 33305, 484471, 8054177, 150635551, 3130337705, 71556251911, 1784401334897, 48205833997231, 1402462784186105, 43716593539939351, 1453550100421124417, 51350258701767067711, 1920785418183176050505, 75839622064482770570791
Offset: 0
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..401
- Gregory Dresden, On the Brousseau sums Sum_{i=1..n} i^p*Fibonacci(i), arxiv.org:2206.00115 [math.NT], 2022.
- Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021).
- G. Ledin, Jr., On a certain kind of Fibonacci sums, Fib. Quart., 5 (1967), 45-58.
- R. L. Ollerton and A. G. Shannon, A Note on Brousseau's Summation Problem, Fibonacci Quart. 58 (2020), no. 5, 190-199.
- Eric Weisstein's MathWorld, Polylogarithm.
- Eric Weisstein's MathWorld, Golden Ratio.
- Eric Weisstein's MathWorld, Lucas Number.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*(2^j-1), j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 05 2019
-
CoefficientList[Series[E^(-x)/(1-E^x+E^(-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 04 2015 *)
Round@Table[(-1)^(n+1) (PolyLog[-n, 1-GoldenRatio] GoldenRatio + PolyLog[-n, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 30 2015 *)
-
a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 2)); \\ Michel Marcus, Oct 30 2015
A341724
Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
Original entry on oeis.org
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Triangle begins:
1;
-2, 1;
8, -4, 1;
-50, 24, -6, 1;
416, -200, 48, -8, 1;
-4322, 2080, -500, 80, -10, 1;
53888, -25932, 6240, -1000, 120, -12, 1;
-783890, 377216, -90762, 14560, -1750, 168, -14, 1;
13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
-
egf:= k-> x^k / ((1-2*sinh(-x))*k!):
A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A341725
Triangle read by rows: coefficients in expansion of Asveld's polynomials p_j(x).
Original entry on oeis.org
1, 3, 1, 13, 6, 1, 81, 39, 9, 1, 673, 324, 78, 12, 1, 6993, 3365, 810, 130, 15, 1, 87193, 41958, 10095, 1620, 195, 18, 1, 1268361, 610351, 146853, 23555, 2835, 273, 21, 1, 21086113, 10146888, 2441404, 391608, 47110, 4536, 364, 24, 1
Offset: 0
Triangle begins:
1,
3, 1,
13, 6, 1,
81, 39, 9, 1,
673, 324, 78, 12, 1,
6993, 3365, 810, 130, 15, 1,
87193, 41958, 10095, 1620, 195, 18, 1,
...
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 5.
-
egf:= k-> exp(x)*x^k / ((1-2*sinh(x))*k!):
A341725:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341725(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
A366298
Expansion of e.g.f. 1 / (-2 + Sum_{k=1..3} exp(-k*x)).
Original entry on oeis.org
1, 6, 58, 828, 15766, 375276, 10719118, 357202068, 13603819126, 582854637276, 27747071520478, 1453003753611108, 83005119616449286, 5136947527401250476, 342365553703113120238, 24447711909762202272948, 1862151878019906517540246, 150702660087903415402794876, 12913688931657425188926182398
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(-2 + Sum[Exp[-k x], {k, 1, 3}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A366299
Expansion of e.g.f. 1 / (-3 + Sum_{k=1..4} exp(-k*x)).
Original entry on oeis.org
1, 10, 170, 4300, 145046, 6115900, 309453710, 18267444100, 1232400398966, 93535914320620, 7887919177776350, 731710341934820500, 74046493229735962886, 8117679564133907097340, 958393800813241073719790, 121232569802975799394430500, 16357741845227058108680934806, 2345072789674603792983906178060
Offset: 0
-
nmax = 17; CoefficientList[Series[1/(-3 + Sum[Exp[-k x], {k, 1, 4}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A366300
Expansion of e.g.f. 1 / (-4 + Sum_{k=1..5} exp(-k*x)).
Original entry on oeis.org
1, 15, 395, 15525, 813671, 53306325, 4190730335, 384368222925, 40289992211591, 4751157347330085, 622528350091484975, 89724601853904952125, 14107579506569655343511, 2403010007367884873188245, 440801776092151383251034815, 86635186648455606881413582125, 18162432724968339044562784395431
Offset: 0
-
nmax = 16; CoefficientList[Series[1/(-4 + Sum[Exp[-k x], {k, 1, 5}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
A366301
Expansion of e.g.f. 1 / (-5 + Sum_{k=1..6} exp(-k*x)).
Original entry on oeis.org
1, 21, 791, 44541, 3344327, 313883661, 35351663831, 4645129190541, 697553757742247, 117844709608925901, 22120757207544654071, 4567542244067740041741, 1028853921587420129556167, 251065459281889114259025741, 65978874409961267115296383511, 18577448234544937135538443584141
Offset: 0
-
nmax = 15; CoefficientList[Series[1/(-5 + Sum[Exp[-k x], {k, 1, 6}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A366302
Expansion of e.g.f. 1 / (-6 + Sum_{k=1..7} exp(-k*x)).
Original entry on oeis.org
1, 28, 1428, 108976, 11088924, 1410452848, 215282610348, 38335940184976, 7801807561068444, 1786227911508713008, 454397569178386774668, 127153351764004535348176, 38815768300684586111354364, 12836619471891836987050169968, 4571701128215207034965181098988, 1744488930796462320024115801858576
Offset: 0
-
nmax = 15; CoefficientList[Series[1/(-6 + Sum[Exp[-k x], {k, 1, 7}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k + 7^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
Original entry on oeis.org
1, 6, 39, 324, 3365, 41958, 610351, 10146888, 189775017, 3943689930, 90148635203, 2248040395692, 60731103481789, 1766863166037102, 55075428554246295, 1831224444159278736, 64692540643308320081, 2419861007021854813074, 95544948688075940395627
Offset: 1
-
A341728 := n -> add((n-k)*binomial(n, k)add(j!*combinat[fibonacci](j+2)*Stirling2(k,j), j=0..k), k=0..n):seq(A341728(n), n=1.. 19); # Mélika Tebni, Sep 04 2023
# E.g.f. Maple program:
A341728 := series(x*exp(x) / (1 - 2*sinh(x)), x = 0, 20):
seq(n!*coeff(A341728, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
Showing 1-10 of 13 results.
Comments