cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000556 Expansion of exp(-x) / (1 - exp(x) + exp(-x)).

Original entry on oeis.org

1, 1, 5, 31, 257, 2671, 33305, 484471, 8054177, 150635551, 3130337705, 71556251911, 1784401334897, 48205833997231, 1402462784186105, 43716593539939351, 1453550100421124417, 51350258701767067711, 1920785418183176050505, 75839622064482770570791
Offset: 0

Views

Author

Keywords

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n, j)*(2^j-1), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 05 2019
  • Mathematica
    CoefficientList[Series[E^(-x)/(1-E^x+E^(-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 04 2015 *)
    Round@Table[(-1)^(n+1) (PolyLog[-n, 1-GoldenRatio] GoldenRatio + PolyLog[-n, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 30 2015 *)
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 2)); \\ Michel Marcus, Oct 30 2015

Formula

a(n) = Sum_{k=0..n} k!*Fibonacci(k+1)*Stirling2(n,k).
E.g.f.: 1/(1 + U(0)) where U(k) = 1 - 2^k/(1 - x/(x - (k+1)*2^k/U(k+1) )); (continued fraction 3rd kind, 3-step ). - Sergei N. Gladkovskii, Dec 05 2012
a(n) ~ 2*n! / ((5+sqrt(5)) * log((1+sqrt(5))/2)^(n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = (-1)^(n+1)*(Li_{-n}(1-phi)*phi + Li_{-n}(phi)/phi)/sqrt(5), where Li_n(x) is the polylogarithm, phi=(1+sqrt(5))/2 is the golden ratio. - Vladimir Reshetnikov, Oct 30 2015
John W. Layman observes that this is also Sum (-2)^k*binomial(n, k)*b(n-k), where b() = A005923.
From Greg Dresden, May 13 2022 (Start):
For n > 0, a(n) = 1 + 2*Sum_{k=0..floor(n/2-1)} binomial(n,2*k+1) * a(n-2*k-1).
For n > 0, a(n) = Sum_{k=0..n-1} binomial(n,k)*A000557(k).
(End)

A005923 From solution to a difference equation.

Original entry on oeis.org

1, 3, 13, 81, 673, 6993, 87193, 1268361, 21086113, 394368993, 8195330473, 187336699641, 4671623344753, 126204511859793, 3671695236949753, 114451527759954921, 3805443567253430593, 134436722612325267393, 5028681509898733705033, 198550708258762398282201
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A000557. - Vladimir Reshetnikov, Oct 29 2015

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Round@Table[Sum[Binomial[n, k] (-1)^k (PolyLog[-k, 1-GoldenRatio] - PolyLog[-k, GoldenRatio])/Sqrt[5] , {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)

Formula

E.g.f.: exp(x)/(1-2*sinh(x)). - Sander Zwegers (s.zwegers(AT)hetnet.nl), Jun 28 2007
E.g.f.: 1/( U(0) -1 ) where U(k) = 1 + 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/U(k+1) )); (continued fraction 3rd kind, 3-step ). - Sergei N. Gladkovskii, Dec 05 2012
a(n) ~ n! * phi / (sqrt(5) * (log(phi))^(n+1)), where phi is the golden ratio. - Vaclav Kotesovec, Nov 27 2017
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k + 1) * binomial(n,k) * (2^k + 1) * a(n-k). - Ilya Gutkovskiy, Jan 16 2020
a(n) = A000556(n) + A000557(n) for n>0. - Greg Dresden, May 13 2022

Extensions

More terms from Vladeta Jovovic, Nov 23 2001

A341724 Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.

Original entry on oeis.org

1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Comments

Conjectures from Mélika Tebni, Sep 04 2023: (Start)
For 0 < k < p and p prime, T(p,k) == 0 (mod p).
For 0 <= k < n and n = 2^m (m natural number), T(n,k) == 0 (mod n). (End)

Examples

			Triangle begins:
         1;
        -2,        1;
         8,       -4,       1;
       -50,       24,      -6,       1;
       416,     -200,      48,      -8,     1;
     -4322,     2080,    -500,      80,   -10,     1;
     53888,   -25932,    6240,   -1000,   120,   -12,   1;
   -783890,   377216,  -90762,   14560, -1750,   168, -14,   1;
  13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1;
  ...
		

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.

Crossrefs

Column 0 is a signed version of A000557, column 1 is A341727.

Programs

  • Maple
    egf:= k-> x^k / ((1-2*sinh(-x))*k!):
    A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
E.g.f. of column k: x^k / ((1-2*sinh(-x))*k!).
T(n,k) = (-1)^(n-k)*binomial(n,k)*A000557(n-k).
Recurrence: T(n,0) = (-1)^n*A000557(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End)
From Alois P. Heinz, Sep 04 2023: (Start)
|Sum_{k=0..n} T(n,k)| = A000556(n).
Sum_{k=0..n} |T(n,k)| = A005923(n).
Sum_{k=0..n} k * T(n,k) = A341726(n). (End)

A341725 Triangle read by rows: coefficients in expansion of Asveld's polynomials p_j(x).

Original entry on oeis.org

1, 3, 1, 13, 6, 1, 81, 39, 9, 1, 673, 324, 78, 12, 1, 6993, 3365, 810, 130, 15, 1, 87193, 41958, 10095, 1620, 195, 18, 1, 1268361, 610351, 146853, 23555, 2835, 273, 21, 1, 21086113, 10146888, 2441404, 391608, 47110, 4536, 364, 24, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Examples

			Triangle begins:
      1,
      3,     1,
     13,     6,     1,
     81,    39,     9,    1,
    673,   324,    78,   12,   1,
   6993,  3365,   810,  130,  15,  1,
  87193, 41958, 10095, 1620, 195, 18, 1,
  ...
		

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 5.

Crossrefs

Column 0 is A005923, column 1 is A341728.

Programs

  • Maple
    egf:= k-> exp(x)*x^k / ((1-2*sinh(x))*k!):
    A341725:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A341725(n, k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
T(n,k) = binomial(n,k)*A005923(n-k).
E.g.f. of column k: exp(x)*x^k / ((1-2*sinh(x))*k!).
T(n,k) = Sum_{j=k..n} binomial(n,j)*A000557(n-j)*binomial(j,k).
Recurrence: T(n,0) = A005923(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End)
Sum_{k=0..n} (-1)^k * T(n,k) = A000557(n). - Alois P. Heinz, Sep 04 2023

Extensions

More terms from Mélika Tebni, Sep 04 2023

A107403 Expansion of e.g.f. 1/(1 - 3*sinh(x)).

Original entry on oeis.org

1, 3, 18, 165, 2016, 30783, 564048, 12057825, 294587136, 8096756763, 247266851328, 8306410495485, 304403359942656, 12085026305182743, 516690458532292608, 23668814542820609145, 1156515067746149400576, 60041982382475841900723, 3300519734382436473765888
Offset: 0

Views

Author

Miklos Kristof, Jun 09 2005

Keywords

Crossrefs

Programs

  • Maple
    E(x):=1/(1-3*sinh(x)): f[0]:=E(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..30);
  • Mathematica
    CoefficientList[Series[1/(1-3*Sinh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*sinh(x)))) \\ Seiichi Manyama, Mar 26 2022

Formula

a(n) ~ n!/(sqrt(10)*(log(1/3+sqrt(10)/3))^(n+1)). - Vaclav Kotesovec, Jun 26 2013
a(0) = 1; a(n) = 3 * Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
a(n) = Sum_{k=0..n} 3^k * k! * A136630(n,k). - Seiichi Manyama, Jun 25 2025

A320352 Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).

Original entry on oeis.org

0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Comments

From Peter Bala, Aug 19 2025: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, ...] with an apparent period of 6 = phi(9) beginning at n = 2. Cf. A004123.(End)

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: (1 + sinh(x) - cosh(x))/(1 - 2*sinh(x)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*Fibonacci(k)*k!.
a(n) ~ n! / (sqrt(5) * phi^2 * (log(phi))^(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2018

A352279 a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * a(n-2*k-1).

Original entry on oeis.org

1, 2, 4, 10, 32, 114, 448, 1978, 9472, 48738, 270336, 1595114, 9965568, 65852882, 457326592, 3329243546, 25356271616, 201326396098, 1663597019136, 14279558011850, 127044810702848, 1170023757062450, 11136610150121472, 109395885009537402, 1107781178494025728, 11549900930966957346
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, 2 k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[Exp[2 Sinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k * Binomial[n, k] * BellB[k, -1] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 27 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(2*sinh(x)))) \\ Seiichi Manyama, Mar 26 2022

Formula

E.g.f.: exp( 2 * sinh(x) ).
a(n) = Sum_{k=0..n} 2^k * A136630(n,k). - Seiichi Manyama, Feb 18 2025

A341727 Column 1 of A341724.

Original entry on oeis.org

1, -4, 24, -200, 2080, -25932, 377216, -6271120, 117287424, -2437334420, 55714920448, -1389365372760, 37533886128128, -1091981490075868, 34038486791454720, -1131758947520249120, 39982188936149204992, -1495556350390047594276, 59050025742595595436032
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Crossrefs

Programs

  • Maple
    A341727 := n -> (-1)^(n-1)*n*add(k!*combinat[fibonacci](k+2)*Stirling2(n-1, k), k=0..n-1):seq(A341727(n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023
    # E.g.f. Maple program:
    A341727 := series(x / (1 + 2*sinh(x)), x = 0, 20):
    seq(n!*coeff(A341727, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
E.g.f.: x / (1 + 2*sinh(x)).
a(n) = (-1)^(n-1)*n*A000557(n-1).
a(n) = (-1)^(n-1)*Sum_{k=0..n} A000556(k)*(n-k)*binomial(n, k). (End)

Extensions

More terms from Mélika Tebni, Sep 04 2023

A341728 Column 1 of A341725.

Original entry on oeis.org

1, 6, 39, 324, 3365, 41958, 610351, 10146888, 189775017, 3943689930, 90148635203, 2248040395692, 60731103481789, 1766863166037102, 55075428554246295, 1831224444159278736, 64692540643308320081, 2419861007021854813074, 95544948688075940395627
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2021

Keywords

Crossrefs

Programs

  • Maple
    A341728 := n -> add((n-k)*binomial(n, k)add(j!*combinat[fibonacci](j+2)*Stirling2(k,j), j=0..k), k=0..n):seq(A341728(n), n=1.. 19); # Mélika Tebni, Sep 04 2023
    # E.g.f. Maple program:
    A341728 := series(x*exp(x) / (1 - 2*sinh(x)), x = 0, 20):
    seq(n!*coeff(A341728, x, n), n = 1 .. 19); # Mélika Tebni, Sep 04 2023

Formula

From Mélika Tebni, Sep 04 2023: (Start)
a(n) = n*A005923(n-1).
E.g.f.: x*exp(x) / (1 - 2*sinh(x)).
a(n) = Sum_{k=0..n} (n-k)*binomial(n, k)*A000557(k). (End)

Extensions

More terms from Mélika Tebni, Sep 04 2023

A193474 Table read by rows: The coefficients of the polynomials P(n, x) = Sum{k=0..n} Sum{j=0..k} (-1)^j * 2^(-k) * binomial(k, j) * (k-2*j)^n * x^(n-k).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 6, 0, 1, 0, 24, 0, 8, 0, 0, 120, 0, 60, 0, 1, 0, 720, 0, 480, 0, 32, 0, 0, 5040, 0, 4200, 0, 546, 0, 1, 0, 40320, 0, 40320, 0, 8064, 0, 128, 0, 0, 362880, 0, 423360, 0, 115920, 0, 4920, 0, 1, 0, 3628800, 0, 4838400, 0, 1693440, 0, 130560, 0, 512, 0, 0
Offset: 1

Views

Author

Peter Luschny, Aug 01 2011

Keywords

Comments

See A196776 for a row reversed form of this triangle. - Peter Bala, Oct 06 2011

Examples

			The sequence of polynomials P(n, x) begins:
[0]    1;
[1]    1;
[2]    2;
[3]    6 +      x^2;
[4]   24 +    8*x^2;
[5]  120 +   60*x^2 +     x^4;
[6]  720 +  480*x^2 +  32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
		

Crossrefs

Programs

  • Maple
    A193474_polynom := proc(n,x) local k, j;
    add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*x^(n-k),j=0..k),k=0..n) end: seq(seq(coeff(A193474_polynom(n,x),x,i),i=0..n),n=0..10);
  • Mathematica
    p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)

Formula

P(n, 0) = A000142(n).
P(n, 1) = A006154(n).
P(n, 2) = A191277(n).
P(n, i) = A000111(n+1), where i is the imaginary unit.
P(n, i)*2^n = A000828(n+1).
P(n, 1/2)*2^n = A000557(n).
P(n, 1/3)*3^n = A107403(n).
P(n, i/2)*2^n = A007289(n).
G(m, x) = 1/(1 - m*sinh(x)) is the generating function of m^n*P(n, 1/m).
GI(m, x) = 1/(1 - m*sin(x)) is the generating function of m^n*P(n, i/m).
[x^2] P(n+1, x) = A005990(n).
Showing 1-10 of 18 results. Next