Original entry on oeis.org
1, 3, 21, 225, 3201, 56913, 1214361, 30229545, 860016801, 27525472353, 978858962601, 38291126920665, 1634047719138801, 75542860973042193, 3761030066169432441, 200624240375801784585, 11415336789685550907201, 690117422445926970890433, 44175435307592982599575881
Offset: 0
-
nmax = 20; CoefficientList[Series[E^x/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*
Range[0, nmax]! (* Vaclav Kotesovec, Feb 01 2024*)
-
def a(m):
if m==0:
return 1
else:
return 1+sum([(3^j-1)*binomial(m,j)*a(m-j) for j in [1,..,m]])
list(a(m) for m in [1,..,50])
A355409
Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).
Original entry on oeis.org
1, 1, 7, 55, 571, 7471, 117307, 2148175, 44958571, 1058555791, 27693129307, 796934764495, 25018548004171, 850870651904911, 31163746960955707, 1222922731101304015, 51189052318085027371, 2276586205163067346831, 107204914362429152404507
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(2*x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-2^j)*binomial(i, j)*v[i-j+1])); v;
A355410
Expansion of e.g.f. 1/(3 - exp(x) - exp(3*x)).
Original entry on oeis.org
1, 4, 42, 652, 13482, 348484, 10809282, 391162972, 16177467642, 752689508404, 38911563009522, 2212759299753292, 137270821971529002, 9225382887659221924, 667690580181890112162, 51776098497454677943612, 4282645413209764715753562
Offset: 0
-
A355410 := proc(n)
option remember ;
if n = 0 then
1;
else
add((3^k + 1) * binomial(n,k) * procname(n-k),k=1..n) ;
end if;
end proc:
seq(A355410(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(3-exp(x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j+1)*binomial(i, j)*v[i-j+1])); v;
A368014
Expansion of e.g.f. 1/(1 - exp(x) + exp(3*x)).
Original entry on oeis.org
1, -2, 0, 22, -48, -722, 5160, 39142, -731808, -1875362, 138079320, -428616938, -32571174768, 360902614798, 8748630825480, -218739750924218, -2165282730308928, 135578968355309758, -45942716160492360, -89526354705694434698, 1011199293695966345712
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1-3^j)*binomial(i, j)*v[i-j+1])); v;
Original entry on oeis.org
1, 4, 28, 298, 4240, 75394, 1608688, 40045618, 1139279680, 36463487554, 1296712045648, 50724943433938, 2164652356532320, 100072984472662114, 4982304066392196208, 265770533884409878258, 15122101633293034668160, 914210942121577873619074, 58519992421072004957876368, 3954059527570115477197922578
Offset: 0
-
nmax = 20; CoefficientList[Series[E^(2*x)/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*Range[0, nmax]! (* Vaclav Kotesovec, Jun 01 2024 *)
-
def a(n):
if n==0:
return 1
else:
return sum([(1-(-1)^j-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
list(a(n) for n in [0,..,20])
Showing 1-5 of 5 results.
Comments