A336951
E.g.f.: 1 / (1 - x * exp(3*x)).
Original entry on oeis.org
1, 1, 8, 69, 780, 11145, 191178, 3823785, 87406056, 2247785073, 64228084110, 2018771719569, 69221032558956, 2571290056399545, 102860527370221026, 4408690840306136505, 201557641172689004112, 9790792086366911655009, 503570143277542340304534
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(3 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 3^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(3*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A381997
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^4.
Original entry on oeis.org
1, 1, 12, 240, 7328, 303400, 15904032, 1010252320, 75442821120, 6478112692224, 628915387166720, 68121797696449024, 8144844724723482624, 1065508614975814537216, 151392999512027274215424, 23217165210450099377479680, 3822334349865128121165283328, 672407573328393115218009063424
Offset: 0
-
A381997 := proc(n)
n!*add((2*k)^(n-k)*binomial(4*k+1,k)/(4*k+1)/(n-k)!,k=0..n) ;
end proc:
seq(A381997(n),n=0..60) ; # R. J. Mathar, Mar 12 2025
-
a(n) = n!*sum(k=0, n, (2*k)^(n-k)*binomial(4*k+1, k)/((4*k+1)*(n-k)!));
A336947
E.g.f.: 1 / (exp(-2*x) - x).
Original entry on oeis.org
1, 3, 14, 98, 920, 10792, 151888, 2494032, 46803072, 988095104, 23178247424, 598074306304, 16835199087616, 513385352524800, 16859837094942720, 593234633904293888, 22265289445252628480, 887889931920920313856, 37489832605652634763264, 1670894259596134872711168
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(Exp[-2 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(2 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 19}]
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] - Sum[Binomial[n, k] (-2)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 19}]
-
seq(n)={ Vec(serlaplace(1 / (exp(-2*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
A336952
E.g.f.: 1 / (1 - x * exp(4*x)).
Original entry on oeis.org
1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A382000
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^5.
Original entry on oeis.org
1, 1, 14, 342, 12872, 659280, 42828912, 3375009568, 312860626304, 33361836534144, 4023352486200320, 541461682626399744, 80448618080927609856, 13079749459734097573888, 2309915877337042992324608, 440332184936376095626076160, 90117169223076699520606896128
Offset: 0
A382001
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^6.
Original entry on oeis.org
1, 1, 16, 462, 20672, 1261400, 97728672, 9190016416, 1016963389696, 129485497897728, 18648682990461440, 2997567408967391744, 531985786683988512768, 103321584851593487961088, 21798243872991807130685440, 4964302861788729054456729600, 1213816740632458735310221672448
Offset: 0
A351790
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 6, 21, 24, 1, 1, 8, 42, 148, 120, 1, 1, 10, 69, 392, 1305, 720, 1, 1, 12, 102, 780, 4600, 13806, 5040, 1, 1, 14, 141, 1336, 11145, 64752, 170401, 40320, 1, 1, 16, 186, 2084, 22200, 191178, 1063216, 2403640, 362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, ...
6, 21, 42, 69, 102, 141, ...
24, 148, 392, 780, 1336, 2084, ...
120, 1305, 4600, 11145, 22200, 39145, ...
-
T[n_, k_] := n!*(1 + Sum[(k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, k^(n-1-j)*binomial(n-1, j)*T(j, k)));
A381998
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^2.
Original entry on oeis.org
1, 1, 8, 90, 1472, 31920, 865152, 28197904, 1075122176, 46976064768, 2315080816640, 127068467480064, 7688296957870080, 508450036968779776, 36490818871396499456, 2824787199565881477120, 234622076533699738861568, 20813348299168251651883008, 1964063064959266899440959488
Offset: 0
A381999
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^3.
Original entry on oeis.org
1, 1, 10, 156, 3656, 115400, 4595232, 221281312, 12510826624, 812633118336, 59642105050880, 4881685773730304, 440905471531302912, 43559980305765793792, 4673231270870843441152, 541042726968231082967040, 67236501012517546330062848, 8927220151967826907452440576
Offset: 0
A336959
E.g.f.: 1 / (1 - x * exp(-2*x)).
Original entry on oeis.org
1, 1, -2, -6, 40, 120, -1872, -3920, 155776, 56448, -19946240, 44799744, 3588719616, -21265587200, -850126505984, 9423227873280, 251457224998912, -4665150579572736, -88212028284665856, 2663461772025462784, 34353949630376181760, -1756678038088484388864
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 - x Exp[-2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(-2 (n - k))^k/k!, {k, 0, n}], {n, 1, 21}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k (-2)^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
Showing 1-10 of 11 results.
Comments