A336950
E.g.f.: 1 / (1 - x * exp(2*x)).
Original entry on oeis.org
1, 1, 6, 42, 392, 4600, 64752, 1063216, 19952256, 421227648, 9880951040, 254960721664, 7176891675648, 218857588139008, 7187394935347200, 252897556424140800, 9491754142468702208, 378509920569294684160, 15982018774576565649408, 712306819507400060502016
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(2 (n - k))^k/k!, {k, 0, n}], {n, 1, 19}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(2*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A336948
E.g.f.: 1 / (exp(-3*x) - x).
Original entry on oeis.org
1, 4, 23, 195, 2229, 31863, 546255, 10925757, 249753897, 6422808411, 183524701779, 5768419379913, 197791542799965, 7347180526444359, 293912722687075767, 12597352573293062757, 575928946256877156177, 27976119070974574461363, 1438896686251112024068251
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(Exp[-3 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(3 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 18}]
a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] - Sum[Binomial[n, k] (-3)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (exp(-3*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
A336952
E.g.f.: 1 / (1 - x * exp(4*x)).
Original entry on oeis.org
1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A351790
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 6, 21, 24, 1, 1, 8, 42, 148, 120, 1, 1, 10, 69, 392, 1305, 720, 1, 1, 12, 102, 780, 4600, 13806, 5040, 1, 1, 14, 141, 1336, 11145, 64752, 170401, 40320, 1, 1, 16, 186, 2084, 22200, 191178, 1063216, 2403640, 362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, ...
6, 21, 42, 69, 102, 141, ...
24, 148, 392, 780, 1336, 2084, ...
120, 1305, 4600, 11145, 22200, 39145, ...
-
T[n_, k_] := n!*(1 + Sum[(k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, k^(n-1-j)*binomial(n-1, j)*T(j, k)));
A351792
Expansion of e.g.f. 1/(1 - x*exp(-3*x)).
Original entry on oeis.org
1, 1, -4, -3, 132, -375, -8298, 86121, 636696, -20318607, 15154290, 5555366289, -57903946092, -1608939709767, 44662076643870, 329040381072825, -31446740971136592, 195779189199531105, 21694625692807192938, -496937940680594097279
Offset: 0
-
a[0] = 1; a[n_] := n!*Sum[(-3*(n - k))^k/k!, {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 19 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(-3*x))))
-
a(n) = n!*sum(k=0, n, (-3*(n-k))^k/k!);
-
a(n) = if(n==0, 1, n*sum(k=0, n-1, (-3)^(n-1-k)*binomial(n-1, k)*a(k)));
A356827
Expansion of e.g.f. exp(x * exp(3*x)).
Original entry on oeis.org
1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0
-
A356827 := proc(n)
add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
end proc:
seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
-
a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));
A368177
Expansion of e.g.f. -log(1 - x * exp(3*x)).
Original entry on oeis.org
0, 1, 7, 47, 402, 4569, 65298, 1119789, 22397112, 511972065, 13166163630, 376208954109, 11824734538620, 405454640476833, 15061050695642994, 602494304797738845, 25823425094211472272, 1180601869774944168513, 57348495330075309426390
Offset: 0
-
With[{nn=20},CoefficientList[Series[-Log[1-x Exp[3x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2024 *)
-
a(n) = sum(k=1, n, (3*k)^(n-k)*(k-1)!*binomial(n, k));
Showing 1-7 of 7 results.