A346982
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).
Original entry on oeis.org
1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]
A346985
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
Original entry on oeis.org
1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
-
a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */
A346984
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5).
Original entry on oeis.org
1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A346983
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).
Original entry on oeis.org
1, 1, 6, 61, 891, 16996, 400251, 11217781, 364638336, 13486045291, 559192836771, 25691965808026, 1295521405067181, 71131584836353861, 4224255395774155566, 269791923787785076921, 18439806740525320993551, 1342957106015632474616956, 103824389511747541791086511
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A352118
Expansion of e.g.f. 1/(2 - exp(3*x))^(1/3).
Original entry on oeis.org
1, 1, 7, 73, 1063, 20041, 464167, 12752713, 405439783, 14641740361, 592050220327, 26499885031753, 1300723181304103, 69470729022993481, 4010891467932629287, 248920020505516389193, 16525139232054244298023, 1168557027163488299171401
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(3*x))^(1/3)))
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 2));
A352119
Expansion of e.g.f. 1/(2 - exp(4*x))^(1/4).
Original entry on oeis.org
1, 1, 9, 121, 2289, 56401, 1713849, 61939081, 2595199329, 123690992161, 6608289658089, 391154820258841, 25408740616159569, 1797051730819428721, 137463201511019813529, 11308020549364112399401, 995455518982520306979009, 93373681491447943767190081
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
A194453
E.g.f. satisfies: A(x) = exp(x) - sqrt(1 - A(x)^2).
Original entry on oeis.org
1, 2, 7, 44, 421, 5342, 83707, 1556984, 33495721, 817880282, 22341817807, 675009140324, 22347321835021, 804481291160822, 31286388389010307, 1307157133950142064, 58390601701376026321, 2776992745284738150962, 140092142842449580093207
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 421*x^5/5! +...
where A( log(sqrt(1-x^2) + x) ) = x and
log(sqrt(1-x^2) + x) = x - 2*x^2/2! + 5*x^3/3! - 24*x^4/4! + 129*x^5/5! - 960*x^6/6! +...+ -(-1)^n*A194349(n)*x^n/n! +...
-
a:= n-> n!*coeff(series(RootOf(A=exp(x)-sqrt(1-A^2), A), x, n+1), x, n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 21 2013
-
Rest[CoefficientList[Series[(E^x-Sqrt[2-E^(2*x)])/2, {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 22 2013 *)
-
{a(n)=n!*polcoeff(serreverse( log(sqrt(1-x^2 +O(x^(n+2)))+x)),n)}
-
{a(n)=n!*polcoeff((exp(x+x*O(x^n))-sqrt(2-exp(2*x+x*O(x^n))))/2,n)}
A367423
Expansion of e.g.f. 1 / sqrt(1 + log(1 - 2*x)).
Original entry on oeis.org
1, 1, 5, 41, 465, 6729, 118437, 2455809, 58630401, 1584058161, 47783202213, 1591924168185, 58055219617425, 2300356943749305, 98409722434170885, 4520749198158270225, 221954573405993807745, 11598560660172502840545, 642753897983638032821445
Offset: 0
-
a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*abs(stirling(n, k, 1)));
Showing 1-8 of 8 results.
Comments