A346982
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).
Original entry on oeis.org
1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]
A346985
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
Original entry on oeis.org
1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
-
a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */
A346984
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5).
Original entry on oeis.org
1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A346983
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).
Original entry on oeis.org
1, 1, 6, 61, 891, 16996, 400251, 11217781, 364638336, 13486045291, 559192836771, 25691965808026, 1295521405067181, 71131584836353861, 4224255395774155566, 269791923787785076921, 18439806740525320993551, 1342957106015632474616956, 103824389511747541791086511
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A352117
Expansion of e.g.f. 1/sqrt(2 - exp(2*x)).
Original entry on oeis.org
1, 1, 5, 37, 377, 4921, 78365, 1473277, 31938737, 784384561, 21523937525, 652667322517, 21672312694697, 782133969325801, 30481907097849485, 1275870745561131757, 57083444567425884257, 2718602143583362124641, 137315150097164841942245
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[2*x])^(-1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
a[n]:=if n=0 then 1 else sum(a[n-k]*(1-k/n/2)*binomial(n,k)*2^k,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 06 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(2-exp(2*x))))
-
a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*stirling(n, k, 2));
A352119
Expansion of e.g.f. 1/(2 - exp(4*x))^(1/4).
Original entry on oeis.org
1, 1, 9, 121, 2289, 56401, 1713849, 61939081, 2595199329, 123690992161, 6608289658089, 391154820258841, 25408740616159569, 1797051730819428721, 137463201511019813529, 11308020549364112399401, 995455518982520306979009, 93373681491447943767190081
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
A352070
Expansion of e.g.f. 1/(1 - log(1 + 3*x))^(1/3).
Original entry on oeis.org
1, 1, 1, 10, 10, 604, -1844, 107344, -1201400, 42193576, -875584376, 29853569008, -880141783184, 32865860907424, -1216481572723616, 51296026356128512, -2244334822166729600, 106984479644794783360, -5358207684820194270080, 286466413246622566048000
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
Table[Sum[3^(n-k) * Product[3*j+1, {j,0,k-1}] * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 07 2023 *)
-
a[n]:=if n=0 then 1 else n!*sum(a[n-k]*(2/n/3-1/k)*(-3)^k/(n-k)!,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 07 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+3*x))^(1/3)))
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 1));
A367424
Expansion of e.g.f. 1 / (1 + log(1 - 3*x))^(1/3).
Original entry on oeis.org
1, 1, 7, 82, 1342, 28204, 724276, 21988000, 770703496, 30639393640, 1362480890104, 67018512565168, 3613262889736144, 211897666186184224, 13429569671442331936, 914731985485067825152, 66638964749234715026560, 5170503246184584686976640
Offset: 0
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*abs(stirling(n, k, 1)));
Showing 1-8 of 8 results.
Comments