A346982
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).
Original entry on oeis.org
1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]
A346985
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
Original entry on oeis.org
1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
-
a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */
A346984
Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5).
Original entry on oeis.org
1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A346983
Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).
Original entry on oeis.org
1, 1, 6, 61, 891, 16996, 400251, 11217781, 364638336, 13486045291, 559192836771, 25691965808026, 1295521405067181, 71131584836353861, 4224255395774155566, 269791923787785076921, 18439806740525320993551, 1342957106015632474616956, 103824389511747541791086511
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A352117
Expansion of e.g.f. 1/sqrt(2 - exp(2*x)).
Original entry on oeis.org
1, 1, 5, 37, 377, 4921, 78365, 1473277, 31938737, 784384561, 21523937525, 652667322517, 21672312694697, 782133969325801, 30481907097849485, 1275870745561131757, 57083444567425884257, 2718602143583362124641, 137315150097164841942245
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(2 - Exp[2*x])^(-1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
a[n]:=if n=0 then 1 else sum(a[n-k]*(1-k/n/2)*binomial(n,k)*2^k,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 06 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(2-exp(2*x))))
-
a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*stirling(n, k, 2));
A352118
Expansion of e.g.f. 1/(2 - exp(3*x))^(1/3).
Original entry on oeis.org
1, 1, 7, 73, 1063, 20041, 464167, 12752713, 405439783, 14641740361, 592050220327, 26499885031753, 1300723181304103, 69470729022993481, 4010891467932629287, 248920020505516389193, 16525139232054244298023, 1168557027163488299171401
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(3*x))^(1/3)))
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 2));
A352073
Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).
Original entry on oeis.org
1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));
Showing 1-7 of 7 results.
Comments