cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097397 Coefficients in asymptotic expansion of normal probability function.

Original entry on oeis.org

1, 1, 1, 5, 9, 129, 57, 9141, -36879, 1430049, -15439407, 418019205, -7404957255, 196896257505, -4656470025015, 134136890777205, -3845524501226655, 123250625100419265, -4085349586734306015, 145973136800663973765
Offset: 0

Views

Author

Michael Somos, Aug 13 2004

Keywords

Comments

a(0) + a(1)*x/(1-2*x) + a(2)*x^2/((1-2*x)*(1-4*x)) + ... = 1 + x + 3*x^2 + 15*x^3 + ...

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 932.

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^(n - 2*k)*(2*k)!/k! * SeriesCoefficient[(1 - n + x)*Pochhammer[2 - n + x, -1 + n], {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 10 2019 *)
  • PARI
    a(n)=sum(k=0,n, 2^(n-2*k)*(2*k)!/k!* polcoeff(prod(i=0,n-1,x-i),k))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-log(1+2*x)))) \\ Seiichi Manyama, Mar 05 2022

Formula

E.g.f.: 1/sqrt(1 - log(1 + 2*x)). - Seiichi Manyama, Mar 05 2022
a(n) ~ n! * (-1)^(n+1) * 2^(n-1) / (log(n)^(3/2) * n) * (1 - 3*(gamma + 1)/(2*log(n)) + 15*(1 + 2*gamma + gamma^2 - Pi^2/6) / (8*log(n)^2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (2*j+1)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k). (End)

A352119 Expansion of e.g.f. 1/(2 - exp(4*x))^(1/4).

Original entry on oeis.org

1, 1, 9, 121, 2289, 56401, 1713849, 61939081, 2595199329, 123690992161, 6608289658089, 391154820258841, 25408740616159569, 1797051730819428721, 137463201511019813529, 11308020549364112399401, 995455518982520306979009, 93373681491447943767190081
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
    
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(n) ~ n! * 2^(2*n - 1/4) / (Gamma(1/4) * n^(3/4) * log(2)^(n + 1/4)). - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-4)^k * binomial(n-1,k) * a(n-k). (End)

A352070 Expansion of e.g.f. 1/(1 - log(1 + 3*x))^(1/3).

Original entry on oeis.org

1, 1, 1, 10, 10, 604, -1844, 107344, -1201400, 42193576, -875584376, 29853569008, -880141783184, 32865860907424, -1216481572723616, 51296026356128512, -2244334822166729600, 106984479644794783360, -5358207684820194270080, 286466413246622566048000
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
    Table[Sum[3^(n-k) * Product[3*j+1, {j,0,k-1}] * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 07 2023 *)
  • Maxima
    a[n]:=if n=0 then 1 else n!*sum(a[n-k]*(2/n/3-1/k)*(-3)^k/(n-k)!,k,1,n);
    makelist(a[n],n,0,50); /* Tani Akinari, Sep 07 2023 */
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+3*x))^(1/3)))
    
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 1));
    

Formula

a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling1(n,k).
For n > 0, a(n) = n!*Sum_{k=1..n} a(n-k)*(2/n/3-1/k)*(-3)^k/(n-k)!. - Tani Akinari, Sep 07 2023
a(n) ~ -(-1)^n * 3^(n-1) * n! / (n * log(n)^(4/3)) * (1 - 4*(1+gamma)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 07 2023

A352114 Expansion of e.g.f. (1 - log(1 - 4*x))^(1/4).

Original entry on oeis.org

1, 1, 1, 17, 129, 2529, 42753, 1080561, 28269825, 910318785, 31733067777, 1260881785041, 54451914027393, 2588888715388065, 132887134408562433, 7371812870053439409, 437841346658159352321, 27782111830252836998529, 1873198439610729939408897
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 4*x])^(1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-4*x))^(1/4)))
    
  • PARI
    a(n) = sum(k=0, n, (-4)^(n-k)*prod(j=0, k-1, -4*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (-4)^(n-k) * (Product_{j=0..k-1} (-4*j+1)) * Stirling1(n,k).
a(n) ~ n! * 2^(2*n-2) / (log(n)^(3/4) * n) * (1 - 3*(gamma + 1)/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022

A367429 Expansion of e.g.f. 1 / (1 - log(1 + 4*x))^(3/4).

Original entry on oeis.org

1, 3, 9, 75, 465, 7827, 54489, 1985883, 5684385, 1038408483, -8440926039, 1026884514411, -24803157926799, 1735078791616947, -69866656826056839, 4467425545047012219, -239734355869361550015, 15985164846462976491075, -1031464442408734822175415
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-4)^k * (1/4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k).

A367426 Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(1/4).

Original entry on oeis.org

1, 1, 9, 137, 2929, 80689, 2722745, 108817785, 5028704865, 263891635425, 15505410046185, 1008591244314345, 71960155841683665, 5587928499550175505, 469183592107676627865, 42356983967876631615705, 4091474631070907136246465, 421070307443746576367920065
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2023

Keywords

Crossrefs

Cf. A352073.

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-6 of 6 results.