A097397
Coefficients in asymptotic expansion of normal probability function.
Original entry on oeis.org
1, 1, 1, 5, 9, 129, 57, 9141, -36879, 1430049, -15439407, 418019205, -7404957255, 196896257505, -4656470025015, 134136890777205, -3845524501226655, 123250625100419265, -4085349586734306015, 145973136800663973765
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 932.
-
Table[Sum[2^(n - 2*k)*(2*k)!/k! * SeriesCoefficient[(1 - n + x)*Pochhammer[2 - n + x, -1 + n], {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 10 2019 *)
-
a(n)=sum(k=0,n, 2^(n-2*k)*(2*k)!/k!* polcoeff(prod(i=0,n-1,x-i),k))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-log(1+2*x)))) \\ Seiichi Manyama, Mar 05 2022
A352119
Expansion of e.g.f. 1/(2 - exp(4*x))^(1/4).
Original entry on oeis.org
1, 1, 9, 121, 2289, 56401, 1713849, 61939081, 2595199329, 123690992161, 6608289658089, 391154820258841, 25408740616159569, 1797051730819428721, 137463201511019813529, 11308020549364112399401, 995455518982520306979009, 93373681491447943767190081
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
A352070
Expansion of e.g.f. 1/(1 - log(1 + 3*x))^(1/3).
Original entry on oeis.org
1, 1, 1, 10, 10, 604, -1844, 107344, -1201400, 42193576, -875584376, 29853569008, -880141783184, 32865860907424, -1216481572723616, 51296026356128512, -2244334822166729600, 106984479644794783360, -5358207684820194270080, 286466413246622566048000
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
Table[Sum[3^(n-k) * Product[3*j+1, {j,0,k-1}] * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 07 2023 *)
-
a[n]:=if n=0 then 1 else n!*sum(a[n-k]*(2/n/3-1/k)*(-3)^k/(n-k)!,k,1,n);
makelist(a[n],n,0,50); /* Tani Akinari, Sep 07 2023 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+3*x))^(1/3)))
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 1));
A352114
Expansion of e.g.f. (1 - log(1 - 4*x))^(1/4).
Original entry on oeis.org
1, 1, 1, 17, 129, 2529, 42753, 1080561, 28269825, 910318785, 31733067777, 1260881785041, 54451914027393, 2588888715388065, 132887134408562433, 7371812870053439409, 437841346658159352321, 27782111830252836998529, 1873198439610729939408897
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 4*x])^(1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-4*x))^(1/4)))
-
a(n) = sum(k=0, n, (-4)^(n-k)*prod(j=0, k-1, -4*j+1)*stirling(n, k, 1));
A367429
Expansion of e.g.f. 1 / (1 - log(1 + 4*x))^(3/4).
Original entry on oeis.org
1, 3, 9, 75, 465, 7827, 54489, 1985883, 5684385, 1038408483, -8440926039, 1026884514411, -24803157926799, 1735078791616947, -69866656826056839, 4467425545047012219, -239734355869361550015, 15985164846462976491075, -1031464442408734822175415
Offset: 0
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 1));
A367426
Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(1/4).
Original entry on oeis.org
1, 1, 9, 137, 2929, 80689, 2722745, 108817785, 5028704865, 263891635425, 15505410046185, 1008591244314345, 71960155841683665, 5587928499550175505, 469183592107676627865, 42356983967876631615705, 4091474631070907136246465, 421070307443746576367920065
Offset: 0
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*abs(stirling(n, k, 1)));
Showing 1-6 of 6 results.
Comments