cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352113 Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).

Original entry on oeis.org

1, 1, 1, 10, 64, 874, 11602, 214696, 4287376, 102791944, 2706467608, 80520419440, 2616373545040, 93309672227680, 3598524149027680, 149819807423180800, 6681701058862660480, 318224146460638476160, 16106859257541255648640, 863764371283534316220160
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 3*x])^(1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-3*x))^(1/3)))
    
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling1(n,k).
a(n) ~ n! * 3^(n-1) / (log(n)^(2/3) * n) * (1 - 2*(gamma + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022

A352075 Expansion of e.g.f. sqrt(1 - log(1 - 2*x)).

Original entry on oeis.org

1, 1, 1, 5, 25, 209, 1961, 23589, 321105, 5100801, 90384369, 1792247973, 39011436201, 928869511569, 23953711043289, 666047439187077, 19847286284835105, 631267636613496705, 21339849019758468705, 764149215124570567365, 28891697037933017586105
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 2*x])^(1/2), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(1-log(1-2*x))))
    
  • PARI
    a(n) = sum(k=0, n, (-2)^(n-k)*prod(j=0, k-1, -2*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (-2*j+1)) * Stirling1(n,k).
a(n) ~ n! * 2^(n-1) / (sqrt(log(n)) * n) * (1 - (gamma + 1)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022

A352123 Expansion of e.g.f. (2 - exp(-4*x))^(1/4).

Original entry on oeis.org

1, 1, -7, 73, -1135, 24241, -659767, 21796153, -846456415, 37772943841, -1904103268327, 106992035096233, -6630198107231695, 449171668238551441, -33024202381308836887, 2618743082761141212313, -222782402553043700662975, 20238957866498067052271041
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[-4*x])^(1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((2-exp(-4*x))^(1/4)))
    
  • PARI
    a(n) = sum(k=0, n, (-4)^(n-k)*prod(j=0, k-1, -4*j+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-4)^(n-k) * (Product_{j=0..k-1} (-4*j+1)) * Stirling2(n,k).
a(n) ~ n! * (-1)^(n+1) * Gamma(1/4) * 2^(2*n - 9/4) / (Pi * n^(5/4) * log(2)^(n -1/4)). - Vaclav Kotesovec, Mar 06 2022
Showing 1-3 of 3 results.