cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A352118 Expansion of e.g.f. 1/(2 - exp(3*x))^(1/3).

Original entry on oeis.org

1, 1, 7, 73, 1063, 20041, 464167, 12752713, 405439783, 14641740361, 592050220327, 26499885031753, 1300723181304103, 69470729022993481, 4010891467932629287, 248920020505516389193, 16525139232054244298023, 1168557027163488299171401
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(3*x))^(1/3)))
    
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling2(n,k).
a(n) ~ n! * 3^n / (2^(1/3) * Gamma(1/3) * n^(2/3) * log(2)^(n + 1/3)). - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 3^k * (1 - 2/3 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 2*Sum_{k=1..n-1} (-3)^k * binomial(n-1,k) * a(n-k). (End)

A097397 Coefficients in asymptotic expansion of normal probability function.

Original entry on oeis.org

1, 1, 1, 5, 9, 129, 57, 9141, -36879, 1430049, -15439407, 418019205, -7404957255, 196896257505, -4656470025015, 134136890777205, -3845524501226655, 123250625100419265, -4085349586734306015, 145973136800663973765
Offset: 0

Views

Author

Michael Somos, Aug 13 2004

Keywords

Comments

a(0) + a(1)*x/(1-2*x) + a(2)*x^2/((1-2*x)*(1-4*x)) + ... = 1 + x + 3*x^2 + 15*x^3 + ...

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 932.

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^(n - 2*k)*(2*k)!/k! * SeriesCoefficient[(1 - n + x)*Pochhammer[2 - n + x, -1 + n], {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 10 2019 *)
  • PARI
    a(n)=sum(k=0,n, 2^(n-2*k)*(2*k)!/k!* polcoeff(prod(i=0,n-1,x-i),k))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-log(1+2*x)))) \\ Seiichi Manyama, Mar 05 2022

Formula

E.g.f.: 1/sqrt(1 - log(1 + 2*x)). - Seiichi Manyama, Mar 05 2022
a(n) ~ n! * (-1)^(n+1) * 2^(n-1) / (log(n)^(3/2) * n) * (1 - 3*(gamma + 1)/(2*log(n)) + 15*(1 + 2*gamma + gamma^2 - Pi^2/6) / (8*log(n)^2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (2*j+1)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k). (End)

A352073 Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).

Original entry on oeis.org

1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
    
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-4)^k * (3/4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 18 2023

A352113 Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).

Original entry on oeis.org

1, 1, 1, 10, 64, 874, 11602, 214696, 4287376, 102791944, 2706467608, 80520419440, 2616373545040, 93309672227680, 3598524149027680, 149819807423180800, 6681701058862660480, 318224146460638476160, 16106859257541255648640, 863764371283534316220160
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 3*x])^(1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-3*x))^(1/3)))
    
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling1(n,k).
a(n) ~ n! * 3^(n-1) / (log(n)^(2/3) * n) * (1 - 2*(gamma + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022

A367428 Expansion of e.g.f. 1 / (1 - log(1 + 3*x))^(2/3).

Original entry on oeis.org

1, 2, 4, 26, 106, 1508, 5860, 221240, -105080, 68914880, -673608800, 40800296480, -879775393760, 40553067851840, -1318206835981760, 60190275180475520, -2497504364769226880, 122572211951306635520, -6006028623693488806400, 324246374847303660704000
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+2)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+2)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-3)^k * (1/3 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k).

A367424 Expansion of e.g.f. 1 / (1 + log(1 - 3*x))^(1/3).

Original entry on oeis.org

1, 1, 7, 82, 1342, 28204, 724276, 21988000, 770703496, 30639393640, 1362480890104, 67018512565168, 3613262889736144, 211897666186184224, 13429569671442331936, 914731985485067825152, 66638964749234715026560, 5170503246184584686976640
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+1)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} 3^k * (1 - 2/3 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-6 of 6 results.