A352118
Expansion of e.g.f. 1/(2 - exp(3*x))^(1/3).
Original entry on oeis.org
1, 1, 7, 73, 1063, 20041, 464167, 12752713, 405439783, 14641740361, 592050220327, 26499885031753, 1300723181304103, 69470729022993481, 4010891467932629287, 248920020505516389193, 16525139232054244298023, 1168557027163488299171401
Offset: 0
-
m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[3*x])^(-1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(3*x))^(1/3)))
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*stirling(n, k, 2));
A097397
Coefficients in asymptotic expansion of normal probability function.
Original entry on oeis.org
1, 1, 1, 5, 9, 129, 57, 9141, -36879, 1430049, -15439407, 418019205, -7404957255, 196896257505, -4656470025015, 134136890777205, -3845524501226655, 123250625100419265, -4085349586734306015, 145973136800663973765
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 932.
-
Table[Sum[2^(n - 2*k)*(2*k)!/k! * SeriesCoefficient[(1 - n + x)*Pochhammer[2 - n + x, -1 + n], {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 10 2019 *)
-
a(n)=sum(k=0,n, 2^(n-2*k)*(2*k)!/k!* polcoeff(prod(i=0,n-1,x-i),k))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-log(1+2*x)))) \\ Seiichi Manyama, Mar 05 2022
A352073
Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).
Original entry on oeis.org
1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));
A352113
Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).
Original entry on oeis.org
1, 1, 1, 10, 64, 874, 11602, 214696, 4287376, 102791944, 2706467608, 80520419440, 2616373545040, 93309672227680, 3598524149027680, 149819807423180800, 6681701058862660480, 318224146460638476160, 16106859257541255648640, 863764371283534316220160
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 3*x])^(1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-3*x))^(1/3)))
-
a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 1));
A367428
Expansion of e.g.f. 1 / (1 - log(1 + 3*x))^(2/3).
Original entry on oeis.org
1, 2, 4, 26, 106, 1508, 5860, 221240, -105080, 68914880, -673608800, 40800296480, -879775393760, 40553067851840, -1318206835981760, 60190275180475520, -2497504364769226880, 122572211951306635520, -6006028623693488806400, 324246374847303660704000
Offset: 0
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+2)*stirling(n, k, 1));
A367424
Expansion of e.g.f. 1 / (1 + log(1 - 3*x))^(1/3).
Original entry on oeis.org
1, 1, 7, 82, 1342, 28204, 724276, 21988000, 770703496, 30639393640, 1362480890104, 67018512565168, 3613262889736144, 211897666186184224, 13429569671442331936, 914731985485067825152, 66638964749234715026560, 5170503246184584686976640
Offset: 0
-
a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*abs(stirling(n, k, 1)));
Showing 1-6 of 6 results.
Comments