A052830
A simple grammar: sequences of rooted cycles.
Original entry on oeis.org
1, 0, 2, 3, 32, 150, 1524, 12600, 147328, 1705536, 23681520, 345605040, 5654922624, 98624766240, 1870594556544, 37794037488480, 817362198512640, 18742996919324160, 455648694329309184, 11683777530785978880, 315505598702787118080, 8943481464393674096640
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
CoefficientList[Series[1/(1+x*Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
a(n):=(-1)^(n)*n!*sum((k!*stirling1(n-k,k))/(n-k)!,k,0,n/2); /* Vladimir Kruchinin, Nov 16 2011 */
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 1/(j-1)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, May 04 2022
-
a(n) = n!*sum(k=0, n\2, k!*abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, May 04 2022
A370988
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x) - 1)) ).
Original entry on oeis.org
1, 0, 2, 3, 76, 425, 10326, 119077, 3158968, 57929265, 1740086290, 44066266541, 1512768107940, 48660920528233, 1905202422005806, 73878129769929045, 3275941116578461936, 147981592692778718561, 7366814796135956094378, 378666415166758834858237
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x)-1)))/x))
-
a(n) = sum(k=0, n\2, (n+k)!*stirling(n-k, k, 2)/(n-k)!)/(n+1);
A353999
Expansion of e.g.f. 1/(1 - x^3/6 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 20, 35, 1176, 10164, 58920, 277365, 3363580, 47567806, 519759604, 4591587455, 51017687280, 786120055400, 12187597925136, 165128862881769, 2261843835692340, 36940778814100210, 678763188831800380, 12143893591131411571, 211404290379223149384
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3/6*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/6*sum(j=4, i, 1/(j-3)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
A353998
Expansion of e.g.f. 1/(1 - x^2/2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 3, 6, 10, 195, 1281, 5908, 68076, 758565, 6486535, 75598446, 1059484218, 13378016743, 185273328345, 2999003869800, 48665352612376, 816394913567433, 15110162148144267, 292156921946387170, 5805684093139498470, 122617308231635240331
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2/2*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/2*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
A358013
Expansion of e.g.f. 1/(1 - x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 750, 5082, 23576, 453672, 5755770, 50894030, 841270452, 14694142476, 201442729670, 3552604015170, 73814245552560, 1369932831933392, 27860865121662066, 655240785723048726, 15052226249248287500, 357713461766745539700, 9416426612423343023742
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(n-2*k)!);
A358014
Expansion of e.g.f. 1/(1 - x^3 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 120, 210, 40656, 363384, 2117520, 9980190, 520250280, 9496208436, 109522054824, 982593614730, 28426015541280, 762523155318000, 14192088961120416, 204618562767970614, 4906638448867994040, 154037798077765359660, 4000484484370905087480
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-x^3 (Exp[x]-1)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 26 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=4, i, 1/(j-3)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*stirling(n-3*k, k, 2)/(n-3*k)!);
A353883
Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^2 / 4).
Original entry on oeis.org
1, 0, 0, 0, 6, 30, 105, 315, 3388, 47628, 497115, 4172025, 37829946, 491971194, 7699457857, 114432747975, 1602464966040, 23767387469688, 408590795439351, 7756561553900085, 149537297087139910, 2889288053301888630, 58297667473293537597
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^2/4)))
-
a(n) = n!*sum(k=0, n\4, (2*k)!*stirling(n-2*k, 2*k, 2)/(4^k*(n-2*k)!));
A353884
Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^3 / 36).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 20, 210, 1400, 7560, 36120, 159390, 1035100, 17082780, 329893564, 5336661330, 73265956400, 889068944400, 9968073461616, 112902000191334, 1531070090032500, 27610559023112100, 586336131631313140, 12550716321612658266, 254052845940651258600
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^3/36)))
-
a(n) = n!*sum(k=0, n\6, (3*k)!*stirling(n-3*k, 3*k, 2)/(36^k*(n-3*k)!));
A353885
Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^4 / 576).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 13650, 115500, 841995, 5555550, 34139105, 198948750, 1175994820, 10315705400, 192609389700, 4563951046200, 98992258506345, 1898260633492650, 32787422848455275, 520556451785466250, 7722233521138092726, 108688302800107222500
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^4/576)))
-
a(n) = n!*sum(k=0, n\8, (4*k)!*stirling(n-4*k, 4*k, 2)/(576^k*(n-4*k)!));
A367881
Expansion of e.g.f. 1/(1 - 3 * x * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 6, 9, 228, 1095, 23238, 215481, 4657992, 66216555, 1553967210, 29793656013, 777115661292, 18608934688383, 542832959656302, 15470567460571905, 503794462155308688, 16557037363336856019, 598704921471691072242, 22205328374455141122165
Offset: 0
-
a(n) = n!*sum(k=0, n\2, 3^k*k!*stirling(n-k, k, 2)/(n-k)!);
Showing 1-10 of 27 results.
Comments