A370993
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x)) ).
Original entry on oeis.org
1, 0, 2, 3, 80, 450, 11424, 133140, 3670400, 68303088, 2123212320, 54742984560, 1938915574848, 63653459126400, 2565847637273088, 101718189575664480, 4637150408792355840, 214393171673968519680, 10962579011721928980480, 577166004742408670937600
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x)))/x))
-
a(n) = sum(k=0, n\2, (n+k)!*abs(stirling(n-k, k, 1))/(n-k)!)/(n+1);
A351503
Expansion of e.g.f. 1/(1 + x^2 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 900, 6048, 43680, 717120, 8658720, 102231360, 1735525440, 28819964160, 473955850368, 9235543363200, 189202617676800, 3940225003653120, 89804740509434880, 2169337606086389760, 54085753764912844800, 1429100881569205125120
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1+x^2 Log[1-x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 18 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
A351505
Expansion of e.g.f. 1/(1 + x^2/2 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 3, 6, 20, 270, 1764, 12600, 146880, 1597680, 17934840, 243777600, 3506518080, 52696595952, 870564618000, 15354480960000, 284780747946240, 5622461683666560, 117425971162442880, 2574172644658272000, 59302473667128599040, 1432738540209781728000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2/2*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/2*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
A351504
Expansion of e.g.f. 1/(1 + x^3 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 240, 1260, 48384, 423360, 3844800, 38253600, 896797440, 14322147840, 216997522560, 3350656108800, 74820944056320, 1621271286835200, 34293811249152000, 727304513980262400, 18147791755697356800, 476653146551318016000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=4, i, 1/(j-3)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*abs(stirling(n-3*k, k, 1))/(n-3*k)!);
A351506
Expansion of e.g.f. 1/(1 + x^3/6 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 2464, 20160, 178800, 1755600, 21215040, 268107840, 3596916960, 51452200800, 800489733120, 13262804755200, 232536822336000, 4300843392518400, 84023034413644800, 1727339274045504000, 37248117171719731200, 840387048760633651200
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3/6*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/6*sum(j=4, i, 1/(j-3)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A052804
A simple grammar: cycles of rooted cycles.
Original entry on oeis.org
0, 0, 2, 3, 20, 90, 714, 5460, 54704, 580608, 7214040, 96932880, 1452396912, 23507621280, 414102201408, 7827185489760, 158757800613120, 3429996441661440, 78775916315263488, 1914627403408320000, 49126748261368331520, 1326584986873331189760
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Cycle(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
nn = 25; Range[0, nn]! CoefficientList[Series[Log[-1/(-1 + Log[-1/(-1 + x)]*x)], {x, 0, nn}], x] (* T. D. Noe, Feb 21 2013 *)
-
N = 66; x = 'x + O('x^N);
egf = -log(1 + x*log(1-x)) + 'c0;
gf = serlaplace(egf);
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Feb 21 2013 */
A353880
Expansion of e.g.f. 1/(1 - (x * log(1-x))^2 / 4).
Original entry on oeis.org
1, 0, 0, 0, 6, 30, 165, 1050, 10192, 108864, 1230660, 14758920, 195861996, 2852815680, 44880446520, 753211040400, 13458760362720, 255688784416800, 5149255813778160, 109489194918180000, 2450182706364430080, 57567025900160259840, 1417073899136197468320
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*log(1-x))^2/4)))
-
a(n) = n!*sum(k=0, n\4, (2*k)!*abs(stirling(n-2*k, 2*k, 1))/(4^k*(n-2*k)!));
A353881
Expansion of e.g.f. 1/(1 + (x * log(1-x))^3 / 36).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 20, 210, 1960, 18900, 194880, 2166780, 26356880, 349806600, 5029088064, 77748751080, 1284349422720, 22551300670080, 419191223208384, 8222848137607680, 169760091173740800, 3679746265902067200, 83564915096633308800, 1984162781781147770880
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(x*log(1-x))^3/36)))
-
a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*(n-3*k)!));
A353882
Expansion of e.g.f. 1/(1 - (x * log(1-x))^4 / 576).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 17850, 242550, 3350655, 48108060, 724403680, 11478967500, 191632761320, 3369643717440, 62346624827760, 1212116258480400, 24721764604046280, 528066880710319440, 11793526736005503720, 274937000436908714520
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*log(1-x))^4/576)))
-
a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*(n-4*k)!));
A375167
Expansion of e.g.f. 1 / (1 + x * log(1 - x^2/2)).
Original entry on oeis.org
1, 0, 0, 3, 0, 15, 180, 210, 5040, 51030, 207900, 3991680, 42411600, 356756400, 6485398920, 80635054500, 1040690851200, 19440077857200, 291313362740400, 4914773560897200, 98182334033784000, 1763213788027692000, 35636304386103220800, 778379605589616030000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^2/2))))
-
a(n) = n!*sum(k=0, n\2, (n-2*k)!*abs(stirling(k, n-2*k, 1))/(2^k*k!));
Showing 1-10 of 30 results.