A351503
Expansion of e.g.f. 1/(1 + x^2 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 900, 6048, 43680, 717120, 8658720, 102231360, 1735525440, 28819964160, 473955850368, 9235543363200, 189202617676800, 3940225003653120, 89804740509434880, 2169337606086389760, 54085753764912844800, 1429100881569205125120
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1+x^2 Log[1-x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 18 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
A351506
Expansion of e.g.f. 1/(1 + x^3/6 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 2464, 20160, 178800, 1755600, 21215040, 268107840, 3596916960, 51452200800, 800489733120, 13262804755200, 232536822336000, 4300843392518400, 84023034413644800, 1727339274045504000, 37248117171719731200, 840387048760633651200
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3/6*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/6*sum(j=4, i, 1/(j-3)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A353229
Expansion of e.g.f. (1 - x)^(-x^3).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 240, 1260, 28224, 241920, 2181600, 21621600, 315342720, 4358914560, 61607407680, 912518006400, 15142006978560, 265601118182400, 4877947688140800, 93691850626483200, 1901787789077452800, 40548028309147699200, 904101131200045363200
Offset: 0
-
With[{nn=30},CoefficientList[Series[(1-x)^-x^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 20 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^3)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^3*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=4, i, j/(j-3)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/(n-3*k)!);
A358014
Expansion of e.g.f. 1/(1 - x^3 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 120, 210, 40656, 363384, 2117520, 9980190, 520250280, 9496208436, 109522054824, 982593614730, 28426015541280, 762523155318000, 14192088961120416, 204618562767970614, 4906638448867994040, 154037798077765359660, 4000484484370905087480
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-x^3 (Exp[x]-1)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 26 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=4, i, 1/(j-3)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*stirling(n-3*k, k, 2)/(n-3*k)!);
A375701
Expansion of e.g.f. 1 / sqrt(1 + x^3 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 12, 30, 120, 630, 19152, 166320, 1506600, 14968800, 313014240, 4864860000, 72829607760, 1116874558800, 23605893400320, 495461472105600, 10289649464640000, 215706738207542400, 5222625647551920000, 133507746422859513600, 3481696859911699968000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+x^3*log(1-x))))
-
a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+3)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A370995
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^3*log(1-x)) ).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 240, 1260, 209664, 2056320, 20476800, 221205600, 19370292480, 406935809280, 7376151444480, 131868581644800, 8376837844193280, 282378273124147200, 7891890567682867200, 207283550601631795200, 11520967360247698636800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^3*log(1-x)))/x))
-
a(n) = sum(k=0, n\4, (n+k)!*abs(stirling(n-3*k, k, 1))/(n-3*k)!)/(n+1);
A375699
Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/6).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 5264, 45360, 409800, 4065600, 77948640, 1183422240, 17527233360, 267109642800, 5422495921920, 110998923235200, 2270809072896000, 47142009514454400, 1116394268619772800, 27963045712157472000, 718066383283082803200
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/6)))
-
a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A375700
Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/3).
Original entry on oeis.org
1, 0, 0, 0, 8, 20, 80, 420, 11648, 100800, 912000, 9055200, 181547520, 2790627840, 41568334080, 635617382400, 13172198645760, 273158953267200, 5632405756723200, 117530452124467200, 2815021136030515200, 71252240659839590400, 1844362570865444044800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/3)))
-
a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+2)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A355665
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).
Original entry on oeis.org
1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
14, 3, 6, 0, 0, 0, 0, ...
88, 32, 12, 24, 0, 0, 0, ...
694, 150, 40, 60, 120, 0, 0, ...
6578, 1524, 900, 240, 360, 720, 0, ...
-
T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);
Showing 1-9 of 9 results.