cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375718 Expansion of e.g.f. 1 / sqrt(1 - x^3 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 0, 12, 30, 60, 105, 15288, 136332, 794160, 3742695, 165156420, 2977295178, 34259966832, 307175369865, 8066201665200, 210501545175960, 3893163654156768, 56023707973290507, 1275541469736173820, 38629328708426716470, 991445561747177496960
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-x^3*(exp(x)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+3)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+3)) * Stirling2(n-3*k,k)/(6^k*(n-3k)!).

A375699 Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/6).

Original entry on oeis.org

1, 0, 0, 0, 4, 10, 40, 210, 5264, 45360, 409800, 4065600, 77948640, 1183422240, 17527233360, 267109642800, 5422495921920, 110998923235200, 2270809072896000, 47142009514454400, 1116394268619772800, 27963045712157472000, 718066383283082803200
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/6)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+1)) * |Stirling1(n-3*k,k)|/(6^k*(n-3k)!).

A375700 Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/3).

Original entry on oeis.org

1, 0, 0, 0, 8, 20, 80, 420, 11648, 100800, 912000, 9055200, 181547520, 2790627840, 41568334080, 635617382400, 13172198645760, 273158953267200, 5632405756723200, 117530452124467200, 2815021136030515200, 71252240659839590400, 1844362570865444044800
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/3)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+2)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+2)) * |Stirling1(n-3*k,k)|/(6^k*(n-3k)!).
Showing 1-3 of 3 results.