A351505
Expansion of e.g.f. 1/(1 + x^2/2 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 3, 6, 20, 270, 1764, 12600, 146880, 1597680, 17934840, 243777600, 3506518080, 52696595952, 870564618000, 15354480960000, 284780747946240, 5622461683666560, 117425971162442880, 2574172644658272000, 59302473667128599040, 1432738540209781728000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2/2*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/2*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
A351504
Expansion of e.g.f. 1/(1 + x^3 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 240, 1260, 48384, 423360, 3844800, 38253600, 896797440, 14322147840, 216997522560, 3350656108800, 74820944056320, 1621271286835200, 34293811249152000, 727304513980262400, 18147791755697356800, 476653146551318016000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=4, i, 1/(j-3)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*abs(stirling(n-3*k, k, 1))/(n-3*k)!);
A353228
Expansion of e.g.f. (1 - x)^(-x^2).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 540, 3528, 25200, 263520, 2741760, 30048480, 372794400, 4971957120, 70612686144, 1076056027200, 17469796780800, 300562292459520, 5468568356666880, 104917700221125120, 2116572758902425600, 44794683422986936320, 992435268252158438400
Offset: 0
-
nmax = 20; CoefficientList[Series[(1-x)^(-x^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^2)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^2*log(1-x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(n-2*k)!);
A358013
Expansion of e.g.f. 1/(1 - x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 750, 5082, 23576, 453672, 5755770, 50894030, 841270452, 14694142476, 201442729670, 3552604015170, 73814245552560, 1369932831933392, 27860865121662066, 655240785723048726, 15052226249248287500, 357713461766745539700, 9416426612423343023742
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(n-2*k)!);
A370994
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x)) ).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 3060, 23688, 191520, 9698400, 158548320, 2304973440, 100716073920, 2627516361600, 58513944513024, 2512156283683200, 89046056086041600, 2739316757454950400, 124170651534918297600, 5440968468533003212800, 215067442349096186572800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x)))/x))
-
a(n) = sum(k=0, n\3, (n+k)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(n+1);
A371302
E.g.f. satisfies A(x) = 1/(1 + x^2*log(1 - x*A(x))).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 1620, 13608, 117600, 2924640, 49603680, 782147520, 19083936960, 463369645440, 10836652514688, 304533583200000, 9218842256332800, 281872333420554240, 9421579421176089600, 338543319734116116480, 12590519274541116518400
Offset: 0
-
a(n) = n!*sum(k=0, n\3, (n-k)!*abs(stirling(n-2*k, k, 1))/((n-2*k)!*(n-2*k+1)!));
A375639
Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^2.
Original entry on oeis.org
1, 0, 0, 12, 24, 80, 2520, 17136, 124320, 2462400, 30965760, 372113280, 7014807360, 122840789760, 2078973921024, 43236813312000, 932206147891200, 20090534745415680, 480054835899371520, 12126262777282805760, 313198020852233932800
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(1+x^2 Log[1-x])^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 29 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^2))
-
a(n) = n!*sum(k=0, n\3, (k+1)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
A375679
Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^3.
Original entry on oeis.org
1, 0, 0, 18, 36, 120, 4860, 33264, 241920, 5598720, 72364320, 879500160, 18172978560, 331463508480, 5726430597888, 126134466796800, 2836325702246400, 62773403361177600, 1562890149787392000, 41009994647421972480, 1090182759179092992000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^3))
-
a(n) = n!*sum(k=0, n\3, (k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/2;
A355665
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).
Original entry on oeis.org
1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
14, 3, 6, 0, 0, 0, 0, ...
88, 32, 12, 24, 0, 0, 0, ...
694, 150, 40, 60, 120, 0, 0, ...
6578, 1524, 900, 240, 360, 720, 0, ...
-
T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);
A375698
Expansion of e.g.f. 1 / sqrt(1 + x^2 * log(1 - x)).
Original entry on oeis.org
1, 0, 0, 3, 6, 20, 360, 2394, 17220, 252720, 2963520, 34525260, 552027960, 8860952880, 142907532768, 2682870913800, 53297669552400, 1086135012144000, 24087251436249600, 566843973576536880, 13834256829134364000, 357412359616922433600, 9723652519748883408000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+x^2*log(1-x))))
-
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = n!*sum(k=0, n\3, a001147(k)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
Showing 1-10 of 10 results.