cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375639 Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^2.

Original entry on oeis.org

1, 0, 0, 12, 24, 80, 2520, 17136, 124320, 2462400, 30965760, 372113280, 7014807360, 122840789760, 2078973921024, 43236813312000, 932206147891200, 20090534745415680, 480054835899371520, 12126262777282805760, 313198020852233932800
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1+x^2 Log[1-x])^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^2))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (k+1)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A351503.
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)! * |Stirling1(n-2*k,k)|/(n-2*k)!.

A376437 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^3 ).

Original entry on oeis.org

1, 0, 0, 18, 36, 120, 24300, 192024, 1572480, 194205600, 3380922720, 50671716480, 4879442177280, 144175221440640, 3391736273557632, 287077095515548800, 12328722259931750400, 413067654425986560000, 33216197499043235527680
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^3)/x))
    
  • PARI
    a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(3*n+3)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 + x^2*A(x)^2 * log(1 - x*A(x)))^3.
a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/3)} (3*n+k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
Showing 1-2 of 2 results.