A353999
Expansion of e.g.f. 1/(1 - x^3/6 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 20, 35, 1176, 10164, 58920, 277365, 3363580, 47567806, 519759604, 4591587455, 51017687280, 786120055400, 12187597925136, 165128862881769, 2261843835692340, 36940778814100210, 678763188831800380, 12143893591131411571, 211404290379223149384
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3/6*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/6*sum(j=4, i, 1/(j-3)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\4, k!*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
A346888
Expansion of e.g.f. 1 / (1 - x^2 * exp(x) / 2).
Original entry on oeis.org
1, 0, 1, 3, 12, 70, 465, 3591, 31948, 319068, 3539385, 43205635, 575312826, 8298867798, 128921967265, 2145837600375, 38097353658120, 718657756980376, 14354000800751313, 302625047150614179, 6716038666999745710, 156498725047355717250, 3820426102008414736761
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x^2 Exp[x]/2), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^2*exp(x)/2))) \\ Michel Marcus, Aug 06 2021
-
a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(2^k*(n-2*k)!)); \\ Seiichi Manyama, May 13 2022
A358013
Expansion of e.g.f. 1/(1 - x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 750, 5082, 23576, 453672, 5755770, 50894030, 841270452, 14694142476, 201442729670, 3552604015170, 73814245552560, 1369932831933392, 27860865121662066, 655240785723048726, 15052226249248287500, 357713461766745539700, 9416426612423343023742
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(n-2*k)!);
A354000
Expansion of e.g.f. exp(x^2/2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 3, 6, 10, 105, 651, 2968, 18936, 152505, 1164295, 9109056, 80012868, 756041377, 7387199925, 75535791360, 816560002576, 9254683835073, 109135702334619, 1338613513677280, 17079079303721820, 226148006163689841, 3100114305453613393, 43935964285680790368
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2*(exp(x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/2*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
A368173
Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).
Original entry on oeis.org
0, 0, 0, 3, 6, 10, 105, 651, 2968, 26496, 265905, 2203795, 22830456, 288661308, 3476579197, 44960585775, 671394654960, 10329701480416, 164573071219233, 2865785889662019, 52647629639499280, 1000194250108913580, 20125846165307543661, 426789766980101676943
Offset: 0
-
a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
A354313
Expansion of e.g.f. 1/(1 - x/2 * (exp(2 * x) - 1)).
Original entry on oeis.org
1, 0, 2, 6, 40, 280, 2496, 25424, 297984, 3920256, 57349120, 922611712, 16193375232, 307896882176, 6304666798080, 138318662000640, 3236895083167744, 80483201605795840, 2118875812456366080, 58882581280649117696, 1722441885524719042560
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/2*(exp(2*x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-2)*binomial(i, j)*v[i-j+1])); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*k!*stirling(n-k, k, 2)/(n-k)!);
A370991
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^2/2*(exp(x) - 1)) ).
Original entry on oeis.org
1, 0, 0, 3, 6, 10, 735, 5691, 29428, 1122696, 18159165, 190810675, 5768268726, 143497346928, 2479363382587, 73013461310895, 2336253676913640, 58015822633914736, 1850758447642034553, 69357415099500398979, 2252468410247071488970
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2/2*(exp(x)-1)))/x))
-
a(n) = sum(k=0, n\3, (n+k)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!))/(n+1);
A355666
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k/k! * (exp(x) - 1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 3, 1, 0, 2, 13, 1, 0, 0, 3, 75, 1, 0, 0, 3, 28, 541, 1, 0, 0, 0, 6, 125, 4683, 1, 0, 0, 0, 4, 10, 1146, 47293, 1, 0, 0, 0, 0, 10, 195, 8827, 545835, 1, 0, 0, 0, 0, 5, 20, 1281, 94200, 7087261, 1, 0, 0, 0, 0, 0, 15, 35, 5908, 1007001, 102247563, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 68076, 12814390, 1622632573
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
13, 3, 3, 0, 0, 0, 0, ...
75, 28, 6, 4, 0, 0, 0, ...
541, 125, 10, 10, 5, 0, 0, ...
4683, 1146, 195, 20, 15, 6, 0, ...
-
T(n, k) = n!*sum(j=0, n\(k+1), j!*stirling(n-k*j, j, 2)/(k!^j*(n-k*j)!));
Showing 1-8 of 8 results.