cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353998 Expansion of e.g.f. 1/(1 - x^2/2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 3, 6, 10, 195, 1281, 5908, 68076, 758565, 6486535, 75598446, 1059484218, 13378016743, 185273328345, 2999003869800, 48665352612376, 816394913567433, 15110162148144267, 292156921946387170, 5805684093139498470, 122617308231635240331
Offset: 0

Views

Author

Seiichi Manyama, May 13 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2/2*(exp(x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/2*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));

Formula

a(0) = 1; a(n) = n!/2 * Sum_{k=3..n} 1/(k-2)! * a(n-k)/(n-k)! = binomial(n,2) * Sum_{k=3..n} binomial(n-2,k-2) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/3)} k! * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).
a(n) ~ 2 * n! / ((4 + 2*r + r^3) * r^n), where r = 1.043121496712693605897520269472163423276582653660720448... is the root of the equation (exp(r)-1)*r^2 = 2. - Vaclav Kotesovec, May 13 2022

A354001 Expansion of e.g.f. exp(x^3/6 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 0, 4, 10, 20, 35, 616, 5124, 29520, 138765, 942700, 9369646, 91711984, 782281955, 6539493520, 62576274440, 693828386976, 7968383514969, 89851862221140, 1023732374445970, 12384993316732960, 160496534000858671, 2163244034675904664, 29653387436468336300
Offset: 0

Views

Author

Seiichi Manyama, May 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^3/6 (Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/6*(exp(x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=4, i, j/(j-3)!*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\4, stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));

Formula

a(0) = 1; a(n) = ((n-1)!/6) * Sum_{k=4..n} k/(k-3)! * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/4)} Stirling2(n-3*k,k)/(6^k * (n-3*k)!).

A356951 E.g.f. satisfies log(A(x)) = x^2/2 * (exp(x) - 1) * A(x).

Original entry on oeis.org

1, 0, 0, 3, 6, 10, 285, 1911, 8848, 155016, 1931625, 17006275, 276807036, 4801114968, 65672925409, 1172625764415, 24657199159440, 460156401399376, 9560083801337793, 230955040794126915, 5393971086379904260, 131545127670380245920, 3587507216606547324321
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = Exp[x^2/2*(Exp[x] - 1)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (k+1)^(k-1)*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x^2/2*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^2/2*(1-exp(x))))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^2/2*(1-exp(x)))/(x^2/2*(1-exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (x^2/2 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^2/2 * (1 - exp(x))) ).
E.g.f.: A(x) = LambertW(x^2/2 * (1 - exp(x)))/(x^2/2 * (1 - exp(x))).

A355650 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^k/k! * (exp(x) - 1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 2, 5, 1, 0, 0, 3, 15, 1, 0, 0, 3, 16, 52, 1, 0, 0, 0, 6, 65, 203, 1, 0, 0, 0, 4, 10, 336, 877, 1, 0, 0, 0, 0, 10, 105, 1897, 4140, 1, 0, 0, 0, 0, 5, 20, 651, 11824, 21147, 1, 0, 0, 0, 0, 0, 15, 35, 2968, 80145, 115975, 1, 0, 0, 0, 0, 0, 6, 35, 616, 18936, 586000, 678570
Offset: 0

Views

Author

Seiichi Manyama, Jul 12 2022

Keywords

Examples

			Square array begins:
    1,   1,   1,  1,  1, 1, 1, ...
    1,   0,   0,  0,  0, 0, 0, ...
    2,   2,   0,  0,  0, 0, 0, ...
    5,   3,   3,  0,  0, 0, 0, ...
   15,  16,   6,  4,  0, 0, 0, ...
   52,  65,  10, 10,  5, 0, 0, ...
  203, 336, 105, 20, 15, 6, 0, ...
		

Crossrefs

Columns k=0..3 give A000110, A052506, A354000, A354001.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 2)/(k!^j*(n-k*j)!));

Formula

T(0,k) = 1 and T(n,k) = ((n-1)!/k!) * Sum_{j=k+1..n} (j/(j-k)!) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling2(n-k*j,j)/(k!^j * (n-k*j)!).
Showing 1-4 of 4 results.