A266328
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(-x) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 1, 2, 6, 21, 92, 469, 2731, 17985, 131528, 1059616, 9319363, 88833422, 912393381, 10043727089, 117969438513, 1472593659884, 19467505081458, 271704942613323, 3992343851680466, 61603531051030691, 995949139457447931, 16835191741257445589, 296976010796327785530, 5457427389713208932740, 104308245862443706265341, 2070461793105333579698992, 42622090166454492404075635
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 6*x^4/4! + 21*x^5/5! + 92*x^6/6! + 469*x^7/7! + 2731*x^8/8! + 17985*x^9/9! + 131528*x^10/10! + ...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + x^2/2! + x^3/3! + 5*x^4/4! + 16*x^5/5! + 76*x^6/6! + 393*x^7/7! + 2338*x^8/8! + 15647*x^9/9! + 115881*x^10/10! + ...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) + 1,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) - log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx - x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) - x) dx:
Integral 1/(exp(x) - x) dx = x - x^3/3! - x^4/4! + 5*x^5/5! + 19*x^6/6! - 41*x^7/7! - 519*x^8/8! - 183*x^9/9! + 19223*x^10/10! + ... + A089148(n-1)*x^n/n! + ...
so that A( Integral 1/(exp(x) - x) dx ) = exp(x).
-
{a(n) = my(A=1+x,B=1+x); for(i=0,n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( A - 1 ) ) ); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) - x) ) )), n)}
for(n=0,30,print1(a(n),", "))
-
Vec( serlaplace( exp( serreverse( intformal( 1/(exp(x +x*O(x^25)) - x)))))) \\ Joerg Arndt, Dec 26 2023
A266490
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(2*x) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 4, 20, 126, 972, 8876, 93580, 1119328, 14986944, 222184136, 3614288272, 64022264176, 1226914925840, 25295189791296, 558317369479616, 13136590271813856, 328243850207690432, 8680766764223956416, 242245419192494844096, 7113910552105144027136, 219304957649505551899136, 7081169542830272102170752, 238996807468258679150596352
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 20*x^3/3! + 126*x^4/4! + 972*x^5/5! + 8876*x^6/6! + 93580*x^7/7! + 1119328*x^8/8! + 14986944*x^9/9! + 222184136*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where B(x) = 1 + 3*x + 10*x^2/2! + 40*x^3/3! + 206*x^4/4! + 1384*x^5/5! + 11644*x^6/6! + 116868*x^7/7! + 1353064*x^8/8! + 17693072*x^9/9! + 257570280*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 2,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + 2*log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + 2*x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + 2*x) dx:
Integral 1/(exp(x) + 2*x) dx = x - 3*x^2/2! + 17*x^3/3! - 145*x^4/4! + 1649*x^5/5! - 23441*x^6/6! + 399865*x^7/7! - 7957881*x^8/8! + 180997857*x^9/9! - 4631289697*x^10/10! +...
so that A( Integral 1/(exp(x) + 2*x) dx ) = exp(x).
-
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ 2^(j - 1) a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
-
{a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 2 + A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + 2*x) ) )), n)}
for(n=0, 30, print1(a(n), ", "))
A289739
Expansion of solution to dy/dx = y + exp(y).
Original entry on oeis.org
0, 1, 2, 5, 17, 79, 474, 3468, 29799, 293528, 3258373, 40234231, 546921835, 8115147998, 130503876054, 2260929219675, 41979302557200, 831593152814251, 17506400133530765, 390278100156698627, 9185223726173708408, 227578002295869672508, 5921091852493279814589
Offset: 0
E.g.f. = x + 2*x^2/2! + 5*x^3/3! + 17*x^4/4! + ...
-
S:= dsolve({diff(y(x),x) = y(x) + exp(y(x)), y(0)=0},y(x),series,order=31):
seq(coeff(rhs(S),x,j)*j!,j=0..30); # Robert Israel, Aug 09 2017
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ InverseSeries[ Series[Integrate[ 1 / (x + Exp[x]), x], {x, 0, n}]], {x, 0, n}]];
-
{a(n) = if( n<0, 0, my(A = O(x)); for(k=1, n, A = intformal(A + exp(A))); n! * polcoeff(A, n))};
-
{a(n) = if( n<0, 0, n! * polcoeff( serreverse( intformal( 1 / (exp(x + x * O(x^n)) + x))), n))};
A268170
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(1+x - exp(x)) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 2, 5, 16, 65, 326, 1947, 13410, 104181, 900214, 8566655, 89055224, 1004141647, 12204369138, 159036267519, 2211764983734, 32696763676521, 511987792322430, 8465194670035767, 147370831072230860, 2694506417687396995, 51622643862824956898, 1034153511794063402519, 21621325640846679627146
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 65*x^5/5! + 326*x^6/6! + 1947*x^7/7! + 13410*x^8/8! + 104181*x^9/9! + 900214*x^10/10! + 8566655*x^11/11! +...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + x + x^2/2! + 2*x^3/3! + 9*x^4/4! + 46*x^5/5! + 245*x^6/6! + 1474*x^7/7! + 10315*x^8/8! + 82174*x^9/9! + 726591*x^10/10! + 7038632*x^11/11! + 74216949*x^12/12! +...+ A268171(n)*x^n/n! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) + exp(x) - 1,
(2) B(x) = A'(x)/A(x),
(3) log(A(x)) = Integral B(x) dx,
(4) log(B(x)) = Integral A(x) dx + 1+x - exp(x).
RELATED SERIES.
log(A(x)) = x + x^2/2! + x^3/3! + 2*x^4/4! + 9*x^5/5! + 46*x^6/6! + 245*x^7/7! + 1474*x^8/8! + 10315*x^9/9! + 82174*x^10/10! + 726591*x^11/11! + 7038632*x^12/12! +...
Let J(x) equal the series reversion of log(A(x)); then
J(x) = x - x^2/2! + 2*x^3/3! - 7*x^4/4! + 31*x^5/5! - 172*x^6/6! + 1155*x^7/7! - 9027*x^8/8! + 80676*x^9/9! - 811727*x^10/10! + 9075333*x^11/11! - 111633356*x^12/12! +...
where A(J(x)) = exp(x).
-
{a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp(1+x - exp(x +x*O(x^n)) + intformal( A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments