A266329
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(x) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 3, 12, 62, 395, 2994, 26331, 263729, 2964845, 36975858, 506687604, 7568226163, 122388728056, 2130425343621, 39718373337525, 789613850257051, 16674806980716514, 372771700023167862, 8794945626017009781, 218392778569695964100, 5693513850197410142081, 155482323312112362743373, 4438621019461797437443233, 132210153223378852014571364, 4101859859297789141335079684, 132343983668857026899533814277
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 62*x^4/4! + 395*x^5/5! + 2994*x^6/6! + 26331*x^7/7! + 263729*x^8/8! + 2964845*x^9/9! + 36975858*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + 2*x + 5*x^2/2! + 17*x^3/3! + 79*x^4/4! + 474*x^5/5! + 3468*x^6/6! + 29799*x^7/7! + 293528*x^8/8! + 3258373*x^9/9! + 40234231*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 1,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + x) dx:
Integral 1/(exp(x) + x) dx = x - 2*x^2/2! + 7*x^3/3! - 37*x^4/4! + 261*x^5/5! - 2301*x^6/6! + 24343*x^7/7! - 300455*x^8/8! + 4238153*x^9/9! - 67255273*x^10/10! +...+ (-1)^(n-1)*A072597(n-1)*x^n/n! +...
so that A( Integral 1/(exp(x) + x) dx ) = exp(x).
-
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
-
{a(n) = my(A=1+x,B=1+x); for(i=0,n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 1 + A ) ) ); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + x) ) )), n)}
for(n=0, 30, print1(a(n), ", "))
A266490
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(2*x) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 4, 20, 126, 972, 8876, 93580, 1119328, 14986944, 222184136, 3614288272, 64022264176, 1226914925840, 25295189791296, 558317369479616, 13136590271813856, 328243850207690432, 8680766764223956416, 242245419192494844096, 7113910552105144027136, 219304957649505551899136, 7081169542830272102170752, 238996807468258679150596352
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 20*x^3/3! + 126*x^4/4! + 972*x^5/5! + 8876*x^6/6! + 93580*x^7/7! + 1119328*x^8/8! + 14986944*x^9/9! + 222184136*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where B(x) = 1 + 3*x + 10*x^2/2! + 40*x^3/3! + 206*x^4/4! + 1384*x^5/5! + 11644*x^6/6! + 116868*x^7/7! + 1353064*x^8/8! + 17693072*x^9/9! + 257570280*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 2,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + 2*log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + 2*x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + 2*x) dx:
Integral 1/(exp(x) + 2*x) dx = x - 3*x^2/2! + 17*x^3/3! - 145*x^4/4! + 1649*x^5/5! - 23441*x^6/6! + 399865*x^7/7! - 7957881*x^8/8! + 180997857*x^9/9! - 4631289697*x^10/10! +...
so that A( Integral 1/(exp(x) + 2*x) dx ) = exp(x).
-
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ 2^(j - 1) a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
-
{a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 2 + A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + 2*x) ) )), n)}
for(n=0, 30, print1(a(n), ", "))
A268170
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(1+x - exp(x)) * exp( Integral A(x) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, 1, 2, 5, 16, 65, 326, 1947, 13410, 104181, 900214, 8566655, 89055224, 1004141647, 12204369138, 159036267519, 2211764983734, 32696763676521, 511987792322430, 8465194670035767, 147370831072230860, 2694506417687396995, 51622643862824956898, 1034153511794063402519, 21621325640846679627146
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 65*x^5/5! + 326*x^6/6! + 1947*x^7/7! + 13410*x^8/8! + 104181*x^9/9! + 900214*x^10/10! + 8566655*x^11/11! +...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + x + x^2/2! + 2*x^3/3! + 9*x^4/4! + 46*x^5/5! + 245*x^6/6! + 1474*x^7/7! + 10315*x^8/8! + 82174*x^9/9! + 726591*x^10/10! + 7038632*x^11/11! + 74216949*x^12/12! +...+ A268171(n)*x^n/n! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) + exp(x) - 1,
(2) B(x) = A'(x)/A(x),
(3) log(A(x)) = Integral B(x) dx,
(4) log(B(x)) = Integral A(x) dx + 1+x - exp(x).
RELATED SERIES.
log(A(x)) = x + x^2/2! + x^3/3! + 2*x^4/4! + 9*x^5/5! + 46*x^6/6! + 245*x^7/7! + 1474*x^8/8! + 10315*x^9/9! + 82174*x^10/10! + 726591*x^11/11! + 7038632*x^12/12! +...
Let J(x) equal the series reversion of log(A(x)); then
J(x) = x - x^2/2! + 2*x^3/3! - 7*x^4/4! + 31*x^5/5! - 172*x^6/6! + 1155*x^7/7! - 9027*x^8/8! + 80676*x^9/9! - 811727*x^10/10! + 9075333*x^11/11! - 111633356*x^12/12! +...
where A(J(x)) = exp(x).
-
{a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp(1+x - exp(x +x*O(x^n)) + intformal( A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments