A052820
Expansion of e.g.f. 1/(1 - x + log(1 - x)).
Original entry on oeis.org
1, 2, 9, 62, 572, 6604, 91526, 1480044, 27353448, 568731648, 13138994112, 333895239072, 9256507508112, 278000959058016, 8991458660924112, 311585506208924064, 11517363473843526912, 452332548042633835776
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Seiichi Manyama, Table of n, a(n) for n = 0..395
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 785
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Cascaded Analytic Nonlinear Systems, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011, pp. 3830-3835.
- M. Thitsa and W. S. Gray, On the radius of convergence of cascaded analytic nonlinear systems: The SISO case, System Theory (SSST), 2011 IEEE 43rd Southeastern Symposium on, 14-16 March 2011, pp. 30-36.
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, 2012, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012
-
spec := [S,{C=Cycle(Z),B=Union(C,Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[1/(1-x+Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
A367845
Expansion of e.g.f. 1/(1 - x + log(1 - 2*x)).
Original entry on oeis.org
1, 3, 22, 250, 3816, 72968, 1675568, 44901456, 1375306368, 47392683648, 1814635323648, 76430014409472, 3511792144942080, 174806087920727040, 9370642040786049024, 538202280800536799232, 32972397141008692445184, 2146270648672407967137792
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367847
Expansion of e.g.f. 1/(1 - x + log(1 - 4*x)).
Original entry on oeis.org
1, 5, 66, 1358, 37592, 1304536, 54384080, 2646247152, 147186205056, 9210766696320, 640472632680192, 48989958019395840, 4087959251421060096, 369547591764702870528, 35976590549993421907968, 3752609987262290143082496, 417518648351593243448279040
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 4^j*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367852
Expansion of e.g.f. 1/(1 - x + log(1 - 3*x)/3).
Original entry on oeis.org
1, 2, 11, 102, 1320, 21804, 436986, 10283580, 277697304, 8458929792, 286825214592, 10712216384352, 436859348261904, 19313926491051360, 920053448561989296, 46977842202096405024, 2559387620091962391552, 148187802162935002975488
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A367923
Expansion of e.g.f. 1/(1 - x + 3*log(1 - x)).
Original entry on oeis.org
1, 4, 35, 462, 8136, 179112, 4731786, 145838844, 5137045848, 203566459392, 8963064065088, 434109674396736, 22936702911358608, 1312878755037640320, 80928769156102447920, 5344960170283958863008, 376543135663291116638208, 28184733661095459402610176
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+3*sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
A367829
E.g.f. A(x) satisfies A(x) = (1 - log(1 - x) * A(3*x)) / (1 - x).
Original entry on oeis.org
1, 2, 17, 530, 60332, 24882484, 36501847110, 186651759218364, 3267898148335418280, 193010228785740170125728, 37993098362777240856612204096, 24678625994736515097158433120107040, 52461378922253347510159057679901573120528
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
Showing 1-6 of 6 results.
Comments